欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

已知橢圓
x2
49
+
y2
24
=1
上一點(diǎn)P與橢圓的兩個(gè)焦點(diǎn)F1,F(xiàn)2連線的夾角為直角,則|PF1|•|PF2|=
48
48
分析:先設(shè)出|PF1|=m,|PF2|=n,利用橢圓的定義求得n+m的值,平方后求得mn和m2+n2的關(guān)系,代入△F1PF2的勾股定理中求得mn的值.
解答:解:設(shè)|PF1|=m,|PF2|=n,
由橢圓的定義可知m+n=2a=14,
∴m2+n2+2nm=196,
∴m2+n2=196-2nm
由勾股定理可知m2+n2=4c2=100,
求得mn=48
故答案為:48.
點(diǎn)評(píng):本題主要考查了橢圓的應(yīng)用,橢圓的簡(jiǎn)單性質(zhì)和橢圓的定義.考查了考生對(duì)所學(xué)知識(shí)的綜合運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的漸近線方程為y=±2x,且與橢圓
x2
49
+
y2
24
=1
有相同的焦點(diǎn),則其焦點(diǎn)坐標(biāo)為
 
,雙曲線的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線與橢圓
x2
49
+
y2
24
=1
共焦點(diǎn),且以y=±
4
3
x
為漸近線,求雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)焦點(diǎn)在x軸上的橢圓,短軸上的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)為同一個(gè)正三角形的頂點(diǎn),焦點(diǎn)與橢圓上點(diǎn)的最近距離為
3
,求橢圓標(biāo)準(zhǔn)方程.
(2)已知雙曲線與橢圓
x2
49
+
y2
24
=1公共焦點(diǎn),且以y=±
4
3
x為漸近線,求雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線與橢圓
x2
49
+
y2
24
=1
有共同的焦點(diǎn),且以y=±
4
3
x
為漸近線.
(1)求雙曲線方程.
(2)求雙曲線的實(shí)軸長(zhǎng).虛軸長(zhǎng).焦點(diǎn)坐標(biāo)及離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線與橢圓
x2
49
+
y2
24
=1
共焦點(diǎn),且以y=±
4
3
x
為漸近線,求雙曲線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案