【題目】(本題滿分18分,第(1)小題4分,第(2)小題5分,第(3)小題9分)
設(shè)函數(shù)
的定義域?yàn)?/span>
,值域?yàn)?/span>
,如果存在函數(shù)
,使得函數(shù)
的值域仍是
,那么稱
是函數(shù)
的一個(gè)等值域變換.
(1)判斷下列函數(shù)
是不是函數(shù)
的一個(gè)等值域變換?說(shuō)明你的理由;
,
;
,
.
(2)設(shè)函數(shù)
的定義域?yàn)?/span>
,值域?yàn)?/span>
,函數(shù)
的定義域?yàn)?/span>
,值域?yàn)?/span>
,那么“
”是否為“
是
的一個(gè)等值域變換”的一個(gè)必要條件?請(qǐng)說(shuō)明理由;
(3)設(shè)
的定義域?yàn)?/span>
,已知
是
的一個(gè)等值域變換,且函數(shù)
的定義域?yàn)?/span>
,求實(shí)數(shù)
的值.
【答案】(1)①不是等值域變換,②是等值域變換;(2)不是;(3)
,
.
【解析】
試題(1)根據(jù)定義易得①不是等值域變換,②是等值域變換;(2)舉反例易知“
” 不是“
是
的一個(gè)等值域變換”的一個(gè)必要條件;(3)由題可得
的值域?yàn)?/span>
,所以
在上恒成立,求得
,
.
試題解析:(1)①不是等值域變換,
②
,即
的值域?yàn)?/span>
,
當(dāng)
時(shí),
,即
的值域仍為
,所以
是
的一個(gè)等值域變換,故①不是等值域變換,②是等值域變換;
(2)不必要性的反例:
,
,
此時(shí)
,但
的值域仍為
,
即
是
的一個(gè)等值域變換,(反例不唯一)
∴ “
” 不是“
是
的一個(gè)等值域變換”的一個(gè)必要條件;
(3)
定義域?yàn)?/span>
,因?yàn)?/span>
是
的一個(gè)等值域變換,且函數(shù)
的定義域?yàn)?/span>
,∴
的值域?yàn)?/span>
,
,
∴ 恒有
, 解得
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)
的定義域?yàn)?/span>
,滿足
,且當(dāng)
時(shí),
.若對(duì)任意
,都有
,則
的取值范圍是( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】命題p:
x∈R,ax2﹣2ax+1>0,命題q:指數(shù)函數(shù)f(x)=ax(a>0且a≠1)為減函數(shù),則P是q的( )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+ax+b,g(x)=ex(cx+d),若曲線y=f(x)和曲線y=g(x)都過(guò)點(diǎn)P(0,2),且在點(diǎn)P處有相同的切線y=4x+2.
(1)求a,b,c,d的值;
(2)若x≥-2時(shí),恒有f(x)≤kg(x),求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以橢圓
的中心O為圓心,以
為半徑的圓稱為該橢圓的“伴隨”.已知橢圓的離心率為
,且過(guò)點(diǎn)
.
(1)求橢圓C及其“伴隨”的方程;
(2)過(guò)點(diǎn)
作“伴隨”的切線l交橢圓C于A,B兩點(diǎn),記
為坐標(biāo)原點(diǎn))的面積為
,將
表示為m的函數(shù),并求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
=
.
(1)若不等式
的解集為
,求不等式
的解集;
(2)若對(duì)于任意的
,不等式
恒成立,求實(shí)數(shù)
的取值范圍;
(3)已知
,若方程
在
有解,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四面體
中,
,
.
(Ⅰ)求證:
;
(Ⅱ)若
與平面
所成的角為
,點(diǎn)
是
的中點(diǎn),求二面角
的大小.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】眼保健操是一種眼睛的保健體操,主要是通過(guò)按摩眼部穴位,調(diào)整眼及頭部的血液循環(huán),調(diào)節(jié)肌肉,改善眼的疲勞,達(dá)到預(yù)防近視等眼部疾病的目的.某學(xué)校為了調(diào)查推廣眼保健操對(duì)改善學(xué)生視力的效果,在應(yīng)屆高三的全體800名學(xué)生中隨機(jī)抽取了100名學(xué)生進(jìn)行視力檢查,并得到如圖的頻率分布直方圖.
![]()
(1)若直方圖中后三組的頻數(shù)成等差數(shù)列,試估計(jì)全年級(jí)視力在5.0以上的人數(shù);
(2)為了研究學(xué)生的視力與眼保健操是否有關(guān)系,對(duì)年級(jí)不做眼保健操和堅(jiān)持做眼保健操的學(xué)生進(jìn)行了調(diào)查,得到下表中數(shù)據(jù),根據(jù)表中的數(shù)據(jù),能否在犯錯(cuò)的概率不超過(guò)0.005的前提下認(rèn)為視力與眼保健操有關(guān)系?
是否做操 是否近視 | 不做操 | 做操 |
近視 | 44 | 32 |
不近視 | 6 | 18 |
附:![]()
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)進(jìn)行有獎(jiǎng)促銷活動(dòng),顧客購(gòu)物每滿500元,可選擇返回50元現(xiàn)金或參加一次抽獎(jiǎng),抽獎(jiǎng)規(guī)則如下:從1個(gè)裝有6個(gè)白球、4個(gè)紅球的箱子中任摸一球,摸到紅球就可獲得100元現(xiàn)金獎(jiǎng)勵(lì),假設(shè)顧客抽獎(jiǎng)的結(jié)果相互獨(dú)立.
(Ⅰ)若顧客選擇參加一次抽獎(jiǎng),求他獲得100元現(xiàn)金獎(jiǎng)勵(lì)的概率;
(Ⅱ)某顧客已購(gòu)物1500元,作為商場(chǎng)經(jīng)理,是希望顧客直接選擇返回150元現(xiàn)金,還是選擇參加3次抽獎(jiǎng)?說(shuō)明理由;
(Ⅲ)若顧客參加10次抽獎(jiǎng),則最有可能獲得多少現(xiàn)金獎(jiǎng)勵(lì)?
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com