【題目】在等差數(shù)列
中,
,![]()
(1)求
的通項(xiàng)公式
;
(2)求
的前n項(xiàng)和![]()
【答案】(1)
;(2)![]()
【解析】
試題分析:(1)根據(jù)已知數(shù)列
為等差數(shù)列,結(jié)合數(shù)列的性質(zhì)可知:前3項(xiàng)和
,所以
,又因?yàn)?/span>
,所以公差
,再根據(jù)等差數(shù)列通項(xiàng)公式
,可以求得
。本問考查等差數(shù)列的通項(xiàng)公式及等差數(shù)列的性質(zhì),屬于對基礎(chǔ)知識的考查,為容易題,要求學(xué)生必須掌握。(2)由于
為等差數(shù)列,所以可以根據(jù)重要結(jié)論得知:數(shù)列
為等比數(shù)列,可以根據(jù)等比數(shù)列的定義進(jìn)行證明,即
,符合等比數(shù)列定義,因此數(shù)列
是等比數(shù)列,首項(xiàng)為
,公比為2,所以問題轉(zhuǎn)化為求以4為首項(xiàng),2為公比的等比數(shù)列的前n項(xiàng)和,根據(jù)公式有
。本問考查等比數(shù)列定義及前n項(xiàng)和公式。屬于對基礎(chǔ)知識的考查。
試題解析:(1)![]()
又![]()
![]()
![]()
(2)由(1)知
得:![]()
是以4為首項(xiàng)2為公比的等比數(shù)列
![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了確定某類種子的發(fā)芽率,從一大批種子中抽出若干粒進(jìn)行發(fā)芽試驗(yàn),其結(jié)果如下表:
種子粒數(shù)n | 25 | 70 | 130 | 700 | 2 015 | 3 000 | 4 000 |
發(fā)芽粒數(shù)m | 24 | 60 | 116 | 639 | 1 819 | 2 713 | 3 612 |
(1)計(jì)算各批種子的發(fā)芽頻率;(保留三位小數(shù))
(2)怎樣合理地估計(jì)這類種子的發(fā)芽率?(保留兩位小數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】4個(gè)不同的球,4個(gè)不同的盒子,把球全部放入盒內(nèi).
(1)恰有1個(gè)盒不放球,共有幾種放法?
(2)恰有1個(gè)盒內(nèi)有2個(gè)球,共有幾種放法?
(3)恰有2個(gè)盒不放球,共有幾種放法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
。
(1)若曲線
在
處的切線方程為
,求實(shí)數(shù)
和
的值;
(2)討論函數(shù)
的單調(diào)性;
(3)若
,且對任意
,都有
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某化工廠引進(jìn)一條先進(jìn)生產(chǎn)線生產(chǎn)某種化工產(chǎn)品, 其生產(chǎn)的總成本
(萬元)與年產(chǎn)量
(噸)之間的函數(shù)關(guān)系式可以近似地表示為
,已知此生產(chǎn)線年產(chǎn)量最大為
噸.
(1)求年產(chǎn)量為多少噸時(shí),生產(chǎn)每噸產(chǎn)品的平均成本最低,并求最低成本;
(2)若毎噸產(chǎn)品平均出廠價(jià)為
萬元,那么當(dāng)年產(chǎn)量為多少噸時(shí),可以獲得最大利潤?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“開門大吉”是某電視臺推出的游戲節(jié)目。選手面對
號8扇大門,依次按響門上的門鈴,
門鈴會播放一段音樂(將一首經(jīng)典流行歌曲以單音色旋律的方式演繹),選手需正確答出這首歌的名字,
方可獲得該扇門對應(yīng)的家庭夢想基金。在一次場外調(diào)查中,發(fā)現(xiàn)參賽選手大多在以下兩個(gè)年齡段:
,
(單位:歲),統(tǒng)計(jì)這兩個(gè)年齡段選手答對歌曲名稱與否的人數(shù)如下圖所示。
![]()
(Ⅰ)寫出
列聯(lián)表,并判斷是否有
的把握認(rèn)為答對歌曲名稱與否和年齡有關(guān),說明你的理由。(下
面的臨界值表供參考)
| 0.1 | 0.05 | 0.01 | 0.005 |
| 2.706 | 3.841 | 6.635 | 7.879 |
(Ⅱ)在統(tǒng)計(jì)過的參賽選手中按年齡段分層選取9名選手,并抽取3名幸運(yùn)選手,求3名幸運(yùn)選手中在
歲年齡段的人數(shù)的分布列和數(shù)學(xué)期望。
(參考公式:
,其中
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線
,半徑為
的圓
與
相切,圓心
在
軸上且在直線
的右上方.
![]()
(1)求圓的方程;
(2)過點(diǎn)
的任意直線與圓
交于
兩點(diǎn)(
在
軸上方),問在
軸正半軸上是否存在定點(diǎn)
,
使得
軸平分
?若存在,請求出點(diǎn)
的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】編輯如下運(yùn)算程序:
,
,
.
(1)設(shè)數(shù)列{
}的各項(xiàng)滿足
,求
;
(2)由(1)猜想{
}的通項(xiàng)公式;
(3)用數(shù)學(xué)歸納法證明你的猜想。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com