【題目】如圖,
為坐標(biāo)原點(diǎn),雙曲線
和橢圓
均過點(diǎn)
,且以
的兩個頂點(diǎn)和
的兩個焦點(diǎn)為頂點(diǎn)的四邊形是面積為2的正方形.
![]()
(1)求
的方程;
(2)是否存在直線
,使得
與
交于
兩點(diǎn),與
只有一個公共點(diǎn),且
?證明你的結(jié)論.
【答案】(1)
;(2)見解析.
【解析】試題分析:(1)利用正方形面積為2,即可得到對角線的長為2,則可得
的兩個頂點(diǎn)和
的兩個焦點(diǎn)的坐標(biāo),求的
的值,再結(jié)合點(diǎn)
在雙曲線上,代入雙曲線結(jié)合
之間的關(guān)系即可求的
的值,得到雙曲線的方程,橢圓的焦點(diǎn)坐標(biāo)已知,點(diǎn)
在橢圓上,利用橢圓的定義
即為
到兩焦點(diǎn)的距離之和,求出距離即可得到
的值,利用
之間的關(guān)系即可求出
的值,得到橢圓的標(biāo)準(zhǔn)方程.
(2)分以下兩種情況討論,當(dāng)直線
的斜率不存在時,直線
與
只有一個公共點(diǎn),即直線經(jīng)過
的頂點(diǎn),得到直線
的方程,代入雙曲線求的
點(diǎn)的坐標(biāo)驗(yàn)證是否符合等式
,當(dāng)直線
的斜率存在時,直線
的方程為
,聯(lián)立直線
與雙曲線消元得到二次方程,再利用根與系數(shù)之間的關(guān)系得到關(guān)于
兩點(diǎn)橫縱坐標(biāo)之和的表達(dá)式,利用
出
,再立直線
與橢圓的方程
即可得到
直線的關(guān)系,可得到內(nèi)積
不可能等于0,進(jìn)而得到
,即
,即不存在這樣的直線.
的焦距為
,由題可得
,從而
,因?yàn)辄c(diǎn)
在雙曲線
上,所以
,由橢圓的定義可得
,于是根據(jù)橢圓
之間的關(guān)系可得
,所以
的方程為
.
(2)不存在符合題設(shè)條件的直線.
①若直線
垂直于
軸,即直線
的斜率不存在,因?yàn)?/span>
與
只有一個公共點(diǎn),所以直線的方程為
或
,
當(dāng)
時,易知
所以
,此時
.
當(dāng)
時,同理可得
.
②當(dāng)直線
不垂直于
軸時,即直線
的斜率存在且設(shè)直線
的方程為
,聯(lián)立直線與雙曲線方程
可得
,當(dāng)
與
相交于
兩點(diǎn)時,設(shè)
,則
滿足方程
,由根與系數(shù)的關(guān)系可得
,于是
,聯(lián)立直線
與橢圓
可得
,因?yàn)橹本
與橢圓只有一個交點(diǎn),
所以
,化簡可得
,因此
,
于是
,即
,所以
,
綜上不存在符合題目條件的直線
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x|2x﹣a|﹣1.
①當(dāng)a=0時,不等式f(x)+1>0的解集為_____;
②若函數(shù)f(x)有三個不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中_________為真命題.
①“A∩B=A”成立的必要條件是“A
B”; w ②“若x2+y2=0,則x,y全為0”的否命題;
③“全等三角形是相似三角形”的逆命題; ④“圓內(nèi)接四邊形對角互補(bǔ)”的逆否命題.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
是定義在
上的奇函數(shù),其圖象如圖所示,令
,則下列關(guān)于函數(shù)
的敘述正確的是()
![]()
A. 若
,則函數(shù)
的圖象關(guān)于原點(diǎn)對稱
B. 若
,則方程
有大于2的實(shí)根
C. 若
,則方程
有兩個實(shí)根
D. 若
,則方程
有兩個實(shí)根
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是圓O的直徑,PA垂直圓所在的平面,C是圓上的點(diǎn).
(1)求證:平面PAC⊥平面PBC;
(2)若AC=1,PA=1,求圓心O到平面PBC的距離.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(x≠0,常數(shù)a∈R).
(1)判斷f(x)的奇偶性,并說明理由;
(2)若f(1)=2,試判斷f(x)在[2,+∞)上的單調(diào)性
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的方程為
,雙曲線
的一條漸近線與
軸所成的夾角為
,且雙曲線的焦距為
.
![]()
(1)求橢圓
的方程;
(2)設(shè)
分別為橢圓
的左,右焦點(diǎn),過
作直線
(與
軸不重合)交橢圓于
,
兩點(diǎn),線段
的中點(diǎn)為
,記直線
的斜率為
,求
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com