【題目】關(guān)于函數(shù)f(x)=
有如下四個(gè)命題:
①f(x)的圖像關(guān)于y軸對稱.
②f(x)的圖像關(guān)于原點(diǎn)對稱.
③f(x)的圖像關(guān)于直線x=
對稱.
④f(x)的最小值為2.
其中所有真命題的序號是__________.
【答案】②③
【解析】
利用特殊值法可判斷命題①的正誤;利用函數(shù)奇偶性的定義可判斷命題②的正誤;利用對稱性的定義可判斷命題③的正誤;取
可判斷命題④的正誤.綜合可得出結(jié)論.
對于命題①,
,
,則
,
所以,函數(shù)
的圖象不關(guān)于
軸對稱,命題①錯(cuò)誤;
對于命題②,函數(shù)
的定義域?yàn)?/span>
,定義域關(guān)于原點(diǎn)對稱,
,
所以,函數(shù)
的圖象關(guān)于原點(diǎn)對稱,命題②正確;
對于命題③,
,
,則
,
所以,函數(shù)
的圖象關(guān)于直線
對稱,命題③正確;
對于命題④,當(dāng)
時(shí),
,則
,
命題④錯(cuò)誤.
故答案為:②③.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,曲線C的方程為
,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為
.
(1)求直線l的直角坐標(biāo)方程;
(2)已知P是曲線C上的一動點(diǎn),過點(diǎn)P作直線
交直線于點(diǎn)A,且直線
與直線l的夾角為45°,若
的最大值為6,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,曲線
的參數(shù)方程為![]()
為參數(shù)
.以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)當(dāng)
時(shí),
是什么曲線?
(2)當(dāng)
時(shí),求
與
的公共點(diǎn)的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為實(shí)現(xiàn)國民經(jīng)濟(jì)新“三步走”的發(fā)展戰(zhàn)略目標(biāo),國家加大了扶貧攻堅(jiān)的力度.某地區(qū)在2015 年以前的年均脫貧率(脫離貧困的戶數(shù)占當(dāng)年貧困戶總數(shù)的比)為
.2015年開始,全面實(shí)施“精準(zhǔn)扶貧”政策后,扶貧效果明顯提高,其中2019年度實(shí)施的扶貧項(xiàng)目,各項(xiàng)目參加戶數(shù)占比(參加該項(xiàng)目戶數(shù)占 2019 年貧困戶總數(shù)的比)及該項(xiàng)目的脫貧率見下表:
實(shí)施項(xiàng)目 | 種植業(yè) | 養(yǎng)殖業(yè) | 工廠就業(yè) | 服務(wù)業(yè) |
參加用戶比 |
|
|
|
|
脫貧率 |
|
|
|
|
那么
年的年脫貧率是實(shí)施“精準(zhǔn)扶貧”政策前的年均脫貧率的( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
是定義在
上的函數(shù),滿足
,且對任意的
,恒有
,已知當(dāng)
時(shí),
,則有( )
A.函數(shù)
的最大值是1,最小值是![]()
B.函數(shù)
是周期函數(shù),且周期為2
C.函數(shù)
在
上遞減,在
上遞增
D.當(dāng)
時(shí),![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)生興趣小組隨機(jī)調(diào)查了某市100天中每天的空氣質(zhì)量等級和當(dāng)天到某公園鍛煉的人次,整理數(shù)據(jù)得到下表(單位:天):
鍛煉人次 空氣質(zhì)量等級 | [0,200] | (200,400] | (400,600] |
1(優(yōu)) | 2 | 16 | 25 |
2(良) | 5 | 10 | 12 |
3(輕度污染) | 6 | 7 | 8 |
4(中度污染) | 7 | 2 | 0 |
(1)分別估計(jì)該市一天的空氣質(zhì)量等級為1,2,3,4的概率;
(2)求一天中到該公園鍛煉的平均人次的估計(jì)值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表);
(3)若某天的空氣質(zhì)量等級為1或2,則稱這天“空氣質(zhì)量好”;若某天的空氣質(zhì)量等級為3或4,則稱這天“空氣質(zhì)量不好”.根據(jù)所給數(shù)據(jù),完成下面的2×2列聯(lián)表,并根據(jù)列聯(lián)表,判斷是否有95%的把握認(rèn)為一天中到該公園鍛煉的人次與該市當(dāng)天的空氣質(zhì)量有關(guān)?
人次≤400 | 人次>400 | |
空氣質(zhì)量好 | ||
空氣質(zhì)量不好 |
附:
,
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù),
),以原點(diǎn)O為極點(diǎn),
軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求曲線
的普通方程和
的直角坐標(biāo)方程;
(2)已知
,曲線
與
的交點(diǎn)A, B滿足
(A為第一象限的點(diǎn)),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“網(wǎng)購”已經(jīng)成為我們?nèi)粘I钪械囊徊糠郑车貐^(qū)隨機(jī)調(diào)查了100名男性和100名女性在“雙十一”活動中用于網(wǎng)購的消費(fèi)金額,數(shù)據(jù)整理如下:
男性消費(fèi)金額頻數(shù)分布表
消費(fèi)金額 (單位:元) | 0~500 | 500~1000 | 1000~1500 | 1500~2000 | 2000~3000 |
人數(shù) | 15 | 15 | 20 | 30 | 20 |
![]()
(1)試分別計(jì)算男性、女性在此活動中的平均消費(fèi)金額;
(2)如果分別把男性、女性消費(fèi)金額與中位數(shù)相差不超過200元的消費(fèi)稱作理性消費(fèi),試問是否有5成以上的把握認(rèn)為理性消費(fèi)與性別有關(guān).
附:![]()
| 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 |
| 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
,
,
,
:
,
:
.給出以下四個(gè)命題:
①分別過點(diǎn)
,
,作
的不同于
軸的切線,兩切線相交于點(diǎn)
,則點(diǎn)
的軌跡為橢圓的一部分;
②若
,
相切于點(diǎn)
,則點(diǎn)
的軌跡恒在定圓上;
③若
,
相離,且
,則與
,
都外切的圓的圓心在定橢圓上;
④若
,
相交,且
,則與
,
一個(gè)內(nèi)切一個(gè)外切的圓的圓心的軌跡為橢圓的一部分.
則以上命題正確的是__________.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com