【題目】三棱柱
,側(cè)棱與底面垂直,
,
,
,
分別是
,
的中點.
![]()
(
)求證:
平面
.
(
)求證:平面
平面
.
【答案】(1)見解析;(2)見解析.
【解析】試題分析:(1)欲證MN||平面BCC1B1,根據(jù)直線與平面平行的判定定理可知只需證MN與平面BCC1B1內(nèi)一直線平行即可,而連接BC1,AC1.根據(jù)中位線定理可知MN||BC1,又MN平面BCC1B1滿足定理所需條件;(2)證明MN⊥BC1,MN⊥AC1,即可證明MN⊥平面ABC1,從而證明平面MAC1⊥平面ABC1.
(
)連接
,
.
在
中,∵
,
是
,
的中點,
∴
,
又∵
平面
,
∴
平面
.
(
)∵三棱柱
中,側(cè)棱與底面垂直,
∴四邊形
是正方形,
∴
,
∴
,
連接
,
,則
≌
,
∴
,
∵
是
的中點,
∴
,
∵
,
∴
平面
,
∵
平面
,
∴平面
平面
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=
,函數(shù)g(x)=b﹣f(2﹣x),其中b∈R,若函數(shù)y=f(x)﹣g(x)恰有4個零點,則b的取值范圍是( )
A.(
,+∞)
B.(﹣∞,
)
C.(0,
)
D.(
,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+ax﹣lnx,a∈R.
(1)若函數(shù)f(x)在[1,2]上是減函數(shù),求實數(shù)a的取值范圍;
(2)令g(x)=f(x)﹣x2 , 是否存在實數(shù)a,當(dāng)x∈(0,e](e是自然常數(shù))時,函數(shù)g(x)的最小值是3,若存在,求出a的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在棱長為1的正方體
中,點
分別是棱
的中點,
是側(cè)面
內(nèi)一點,若
∥平面
,則線段
長度的取值范圍是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在斜三梭柱ABC﹣A1B1C1中,側(cè)面AA1C1C是菱形,AC1與A1C交于點O,E是棱AB上一點,且OE∥平面BCC1B1![]()
(1)求證:E是AB中點;
(2)若AC1⊥A1B,求證:AC1⊥BC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
,直線
過點
且與圓
相切 .
(I)求直線
的方程;
(II)如圖,圓
與
軸交于
兩點,點
是圓
上異于
的任意一點,過點
且與
軸垂直的直線為
,直線
交直線
于點
,直線
交直線
于點
,求證:以
為直徑的圓
與
軸交于定點
,并求出點
的坐標(biāo) .
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com