【題目】已知k∈R,直線l1:x+ky=0過定點(diǎn)P,直線l2:kx﹣y﹣2k+2=0過定點(diǎn)Q,兩直線交于點(diǎn)M,則|MP|+|MQ|的最大值是( )
A.2 ![]()
B.4
C.4 ![]()
D.8
【答案】B
【解析】解:直線l1:kx+y=0過定點(diǎn)P(0,0),
由kx﹣y﹣2k+2=0化為k(x﹣2)+(2﹣y)=0,令
,解得
.
直線l2:kx﹣y﹣2k+2=0過定點(diǎn)Q(2,2).
∴|PQ|2=22+22=8.
當(dāng)k≠0時(shí),兩條直線的斜率滿足
×k=﹣1,此時(shí)兩條直線相互垂直;
當(dāng)k=0時(shí),兩條直線分別化為:x=0,y﹣2=0,此時(shí)兩條直線相互垂直.
綜上可得:兩條直線相互垂直.
∴|MP|2+|MQ|2=|PQ|2=8.
∴16=2(|MP|2+|MQ|2)≥(|MP|+|MQ|)2 ,
解得|MP|+|MQ|≤4,當(dāng)且僅當(dāng)|MP|=|MQ|=2時(shí)取得等號.
則|MP|+|MQ|的最大值是4.
故選:B.
直線l1:kx+y=0過定點(diǎn)P(0,0),由kx﹣y﹣2k+2=0化為k(x﹣2)+(2﹣y)=0,可得直線l2:kx﹣y﹣2k+2=0過定點(diǎn)Q(2,2).可以判定兩條直線相互垂直.利用2(|MP|2+|MQ|2)≥(|MP|+|MQ|)2 , 即可得出.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了了解學(xué)生對消防知識的了解情況,從高一年級和高二年級各選取100名同學(xué)進(jìn)行消防知識競賽.下圖(1)和下圖(2)分別是對高一年級和高二年級參加競賽的學(xué)生成績按
,
,
,
分組,得到的頻率分布直方圖.
![]()
(1)請計(jì)算高一年級和高二年級成績小于60分的人數(shù);
(2)完成下面
列聯(lián)表,并回答:有多大的把握可以認(rèn)為“學(xué)生所在的年級與消防常識的了解存在相關(guān)性”?
![]()
附:臨界值表及參考公式:
,
.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)f(x)的對稱軸是x=-1,f(x)在R上的最小值是0,且f(1)=4.
(1)求函數(shù)f(x)的解析式;
(2)若g(x)=(λ-1)f(x-1)-λx-3在x∈[-1,1]上是增函數(shù),求實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)討論函數(shù)
的單調(diào)性;
(2)若函數(shù)
存在兩個(gè)極值點(diǎn)
且滿足
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在R的奇函數(shù),且當(dāng)x<0時(shí),f(x)=1+3x.
(1)求f(x)的解析式并畫出其圖形;
(2)求函數(shù)f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=
cos(2x-
).
(1)利用“五點(diǎn)法”,完成以下表格,并畫出函數(shù)f(x)在一個(gè)周期上的圖象;
(2)求函數(shù)f(x)的單調(diào)遞減區(qū)間和對稱中心的坐標(biāo);
(3)如何由y=cosx的圖象變換得到f(x)的圖象.
2x- | 0 |
| π |
| 2π |
x | |||||
f(x) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,面積為
的正方形
中有一個(gè)不規(guī)則的圖形
,可按下面方法估計(jì)
的面積:在正方形
中隨機(jī)投擲
個(gè)點(diǎn),若
個(gè)點(diǎn)中有
個(gè)點(diǎn)落入
中,則
的面積的估計(jì)值為
,假設(shè)正方形
的邊長為2,
的面積為1,并向正方形
中隨機(jī)投擲
個(gè)點(diǎn),以
表示落入
中的點(diǎn)的數(shù)目.
![]()
(I)求
的均值
;
(II)求用以上方法估計(jì)
的面積時(shí),
的面積的估計(jì)值與實(shí)際值之差在區(qū)間
內(nèi)的概率.
附表: ![]()
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,命題
,
;命題
.
(1)若
為真命題,求
的取值范圍;
(2)若
為真命題,求
的取值范圍;
(3)若“
”為假命題,“
”為假命題,求
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com