【題目】已知在平面直角坐標系中,動點P到定點F(1,0)的距離比到定直線x=-2的距離小1.
(1)求動點P的軌跡C的方程;
(2)若直線l與(1)中軌跡C交于A,B兩點,通過A和原點O的直線交直線x=-1于D,求證:直線DB平行于x軸.
科目:高中數(shù)學 來源: 題型:
【題目】南北朝時代的偉大科學家祖暅在數(shù)學上有突出貢獻,他在實踐的基礎上提出祖暅原理:“冪勢既同,則積不容異”. 其含義是:夾在兩個平行平面之間的兩個幾何體,被平行于這兩個平行平面的任意平面所截,如果截得的兩個截面的面積總相等,那么這兩個幾何體的體積相等.如圖,夾在兩個平行平面之間的兩個幾何體的體積分別為
,被平行于這兩個平面的任意平面截得的兩個截面面積分別為
,則“
相等”是“
總相等”的
![]()
A. 充分而不必要條件B. 必要而不充分條件
C. 充分必要條件D. 既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,橢圓
的左、右焦點為
,右頂點為
,上頂點為
,若
,
與
軸垂直,且
.
(1)求橢圓方程;
(2)過點
且不垂直于坐標軸的直線與橢圓交于
兩點,已知點
,當
時,求滿足
的直線
的斜率
的取值范圍.
![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,已知多面體
的直觀圖(圖1)和它的三視圖(圖2),
![]()
(1)在棱
上是否存在點
,使得
平面
?若存在,求
的值,并證明你的結(jié)論;若不存在,說明理由;
(2)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
.
(1)若不等式
的解集為
,求實數(shù)
的值;
(2)在(1)的條件下,若存在實數(shù)
使
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】微信是現(xiàn)代生活中進行信息交流的重要工具.據(jù)統(tǒng)計,某公司200名員工中
的人使用微信,其中每天使用微信時間少于一小時的有60人,其余的員工每天使用微信時間不少于一小時,若將員工分成青年(年齡小于40歲)和中年(年齡不小于40歲)兩個階段,那么使用微信的人中
是青年人.若規(guī)定:每天使用微信時間不少于一小時為經(jīng)常使用微信,那么經(jīng)常使用微信的員工中
都是青年人.
(1)若要調(diào)查該公司使用微信的員工經(jīng)常使用微信與年齡的關系,完成
列聯(lián)表:
青年人 | 中年人 | 合計 | |
經(jīng)常使用微信 | |||
不經(jīng)常使用微信 | |||
合計 |
(2)由列聯(lián)表中所得數(shù)據(jù)判斷,能否在犯錯誤的概率不超過
的前提下認為“經(jīng)常使用微信與年齡有關”?
| 0.010 | 0.001 |
| 6.635 | 10.828 |
![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列
滿足
.
(1)若數(shù)列
是等差數(shù)列,求
的值;
(2)當
時,求數(shù)列
的前
項和
;
(3)若對任意
,都有
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x3+ax2+bx+c在x
與x=1時都取得極值,求a,b的值與函數(shù)f(x)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)
為自然對數(shù)的底數(shù).
(1)若
,且函數(shù)
在區(qū)間
內(nèi)單調(diào)遞增,求實數(shù)
的取值范圍;
(2)若
,試判斷函數(shù)
的零點個數(shù).
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com