分析 (1)求導(dǎo)數(shù),利用導(dǎo)數(shù)的正負(fù),求f(x)的單調(diào)區(qū)間;
(2)設(shè)$\sqrt{\frac{{x}_{1}}{{x}_{2}}}$=t>1,則原命題等價(jià)于lnt<$\frac{1}{2}$(t-$\frac{1}{t}$),t>1.構(gòu)造函數(shù),確定單調(diào)性,即可證明結(jié)論.
解答 (1)解:f′(x)=$\frac{(ax-1)(x-1)}{x}$,
x∈(0,1),($\frac{1}{a}$,+∞),f′(x)>0,函數(shù)單調(diào)遞增;
x∈(1,$\frac{1}{a}$),f′(x)<0,函數(shù)單調(diào)遞減;
(2)證明:∵f(x1)=f(x2),
∴l(xiāng)nx1-x1=lnx2-x2,
∴$\frac{ln\frac{{x}_{1}}{{x}_{2}}}{{x}_{1}-{x}_{2}}$=1,
x1•x2<1等價(jià)于$\frac{ln\frac{{x}_{1}}{{x}_{2}}}{{x}_{1}-{x}_{2}}$•$\sqrt{{x}_{1}{x}_{2}}$<1.
設(shè)$\sqrt{\frac{{x}_{1}}{{x}_{2}}}$=t>1,則原命題等價(jià)于lnt<$\frac{1}{2}$(t-$\frac{1}{t}$),t>1.
令g(t)=lnt-$\frac{1}{2}$(t-$\frac{1}{t}$),t>1.
g′(t)=$\frac{-{t}^{2}+2t-1}{2{t}^{2}}$<0,
∴g(t)在(1,+∞)上單調(diào)遞減,
∴g(t)<g(1)=0,即lnt<$\frac{1}{2}$(t-$\frac{1}{t}$),
∴x1•x2<1.
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)知識(shí)的綜合運(yùn)用,考查函數(shù)的單調(diào)性,考查不等式的證明,正確運(yùn)用導(dǎo)數(shù)是關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 在區(qū)間(1,3)內(nèi)f(x)是減函數(shù) | B. | 當(dāng)x=1時(shí),f(x)取到極大值 | ||
| C. | 在(4,5)內(nèi)f(x)是增函數(shù) | D. | 當(dāng)x=2時(shí),f(x)取到極小值 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com