分析 由題意可得函數(shù)f(x)為偶函數(shù),函數(shù)f(x)在(-∞,0]是減函數(shù),故函數(shù)f(x)在(0,+∞)上是增函數(shù).則由不等式f(2x-1)<f(3),可得-3<2x-1<3,由此求得x的范圍.
解答 解:∵f(x)-f(-x)=0,故函數(shù)f(x)為偶函數(shù),
∵在(-∞,0]上總有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,即圖象上任意兩點(diǎn)的斜率小于零,
故函數(shù)f(x)在(-∞,0]是減函數(shù),故函數(shù)f(x)在(0,+∞)上是增函數(shù).
則由不等式f(2x-1)<f(3),可得-3<2x-1<3,求得-1<x<2,
故不等式的解集為(-1,2),
故答案為:(-1,2).
點(diǎn)評(píng) 本題主要考查函數(shù)的奇偶性和單調(diào)性的綜合應(yīng)用,屬于基礎(chǔ)題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{3}{5}$ | B. | $\frac{4}{5}$ | C. | 7 | D. | $\frac{1}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\overrightarrow{BC}$=$\overrightarrow{AB}$+$\overrightarrow{AC}$ | B. | $\overrightarrow{BC}$=$\overrightarrow{AC}$-$\overrightarrow{AB}$ | C. | $\overrightarrow{BC}$=-$\overrightarrow{AC}$+$\overrightarrow{AB}$ | D. | $\overrightarrow{BC}$=-$\overrightarrow{AC}$-$\overrightarrow{AB}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 33% | B. | 49% | C. | 62% | D. | 88% |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\sqrt{2}$ | B. | 1 | C. | $\frac{{\sqrt{2}}}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\sqrt{3}$ | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com