分析 求出函數(shù)的導(dǎo)數(shù),可得切線(xiàn)的斜率和切點(diǎn),由點(diǎn)斜式方程可得切線(xiàn)的方程.
解答 解:函數(shù)f(x)=$\frac{lnx+4}{x}$的導(dǎo)數(shù)為f′(x)=$\frac{1-(lnx+4)}{{x}^{2}}$=$\frac{-3-lnx}{{x}^{2}}$
可得切線(xiàn)的斜率為f′(1)=-3-ln1=-3,切點(diǎn)為(1,4),
可得f(x)在點(diǎn)(1,4)處的切線(xiàn)方程為y-4=-3(x-1),
即3x+y-7=0.
故答案為:3x+y-7=0.
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求切線(xiàn)的方程,考查導(dǎo)數(shù)的幾何意義和直線(xiàn)方程的運(yùn)用,正確求得導(dǎo)數(shù)是解題的關(guān)鍵,屬于基礎(chǔ)題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | -2 | B. | $\frac{1}{2}$ | C. | 3 | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | {2,3,4,5} | B. | {0,-1,-2,-3} | C. | {1,2,3,4} | D. | {-2,-3,-4,-5} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{4mf(m+1)}{m+1}$>2$\sqrt{m}$f(2$\sqrt{m}$)>(m+1)f($\frac{4m}{m+1}$) | B. | $\frac{4mf(m+1)}{m+1}$<2$\sqrt{m}$f(2$\sqrt{m}$)<(m+1)f($\frac{4m}{m+1}$) | ||
| C. | 2$\sqrt{m}$f(2$\sqrt{m}$)>$\frac{4mf(m+1)}{m+1}$>(m+1)f($\frac{4m}{m+1}$) | D. | 2$\sqrt{m}$f(2$\sqrt{m}$)<$\frac{4mf(m+1)}{m+1}$<(m+1)f($\frac{4m}{m+1}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com