分析 (1)利用遞推公式求得a2=2+8+1=11,a3=39;
(2)化簡(jiǎn)an=2an-1+2n+1+1為an+1=2(an-1+1)+2n+1,從而可得$\frac{{a}_{n}+1}{{2}^{n}}$-$\frac{{a}_{n-1}+1}{{2}^{n-1}}$=2,從而證明,再求等差數(shù)列前n項(xiàng)和即可.
解答 解:(1)∵a1=1,an=2an-1+2n+1+1,
∴a2=2a1+22+1+1=2+8+1=11,
a3=2a2+23+1+1=39;
(2)證明:∵an=2an-1+2n+1+1,
∴an+1=2an-1+2n+1+1+1,
即an+1=2(an-1+1)+2n+1,
即$\frac{{a}_{n}+1}{{2}^{n}}$=$\frac{{a}_{n-1}+1}{{2}^{n-1}}$+2,
故$\frac{{a}_{n}+1}{{2}^{n}}$-$\frac{{a}_{n-1}+1}{{2}^{n-1}}$=2,
又∵$\frac{{a}_{1}+1}{2}$=1,
∴{$\frac{{a}_{n}+1}{{2}^{n}}$}是以1為首項(xiàng),2為公差的等差數(shù)列,
故$\frac{{a}_{n}+1}{{2}^{n}}$=2n-1,
其前n項(xiàng)和Sn=$\frac{1+2n-1}{2}$×n=n2.
點(diǎn)評(píng) 本題考查了數(shù)列遞推公式的應(yīng)用及構(gòu)造數(shù)列以證明數(shù)列的性質(zhì),同時(shí)考查了數(shù)列前n項(xiàng)和公式的應(yīng)用.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | t<r<s | B. | t<s<r | C. | s<r<t | D. | s<t<r |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{8}{{a}^{6}}$ | B. | -$\frac{8}{{a}^{6}}$ | C. | $\frac{56}{{a}^{6}}$ | D. | -$\frac{56}{{a}^{6}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com