(本題14分)
已知函數(shù)
R).
(1)若曲線
在點(diǎn)
處的切線與直線
平行,求
的值;
(2)在(1)條件下,求函數(shù)
的單調(diào)區(qū)間和極值;
(3)當(dāng)
,且
時(shí),證明:![]()
解:(I)函數(shù)![]()
所以![]()
又曲線
處的切線與直線
平行,
所以
(II)令![]()
當(dāng)x變化時(shí),
的變化情況如下表:
|
|
|
|
|
|
|
+ |
0 |
— |
|
|
|
極大值 |
|
由表可知:
的單調(diào)遞增區(qū)間是
,單調(diào)遞減區(qū)間是![]()
所以
處取得極大值,![]()
(III)當(dāng)![]()
由于![]()
只需證明![]()
令![]()
因?yàn)?img
src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012051818061235939415/SYS201205181807397031216451_DA.files/image024.png">,所以
上單調(diào)遞增,
當(dāng)
即
成立。
故當(dāng)
時(shí),有
【解析】略
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題14分)已知集合A=
,B=
,
(1)當(dāng)
時(shí),求![]()
(2)若
:
,
:
,且
是
的必要不充分條件,求實(shí)數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題14分)已知直線
:y=kx+1與雙曲線C:2x2-y2=1的右支交于不同的兩點(diǎn)A、B。(1)求實(shí)數(shù)k的取值范圍;(2)是否存在實(shí)數(shù)k,使得以線段AB為直徑的圓經(jīng)過(guò)雙曲線C的右焦點(diǎn)F?若薦在,求出k的值。若不存在,說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省高三第一學(xué)期期末考試文科數(shù)學(xué) 題型:解答題
(本題14分)已知![]()
(1)求
的值;
(2)求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江蘇省高三上學(xué)期9月質(zhì)量檢測(cè)數(shù)學(xué)卷 題型:解答題
(本題14分)已知
為坐標(biāo)原點(diǎn),
,
.
(Ⅰ)求
的單調(diào)遞增區(qū)間;
(Ⅱ)若
的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052320571745311632/SYS201205232058093906816610_ST.files/image006.png">,值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052320571745311632/SYS201205232058093906816610_ST.files/image007.png">,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆廣東省湛江市高一第一學(xué)期第二學(xué)段考試數(shù)學(xué) 題型:解答題
(本題14分)已知定義域?yàn)镽的函數(shù)
是奇函數(shù)。(1)求a的值;(2)用定義判斷該函數(shù)的單調(diào)性 (3)若對(duì)任意的
,不等式
恒成立,求k的取值范圍;
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com