已知各項(xiàng)都不相等的等差數(shù)列
的前6項(xiàng)和為60,且
為
和
的等比中項(xiàng).
(1) 求數(shù)列
的通項(xiàng)公式;
(2) 若數(shù)列
滿足
,且
,求數(shù)列
的前
項(xiàng)和
.
(1)
;(2)
.
解析試題分析:(1) 求數(shù)列
的通項(xiàng)公式,因?yàn)槭堑炔顢?shù)列,故只需求出
即可,由已知前6項(xiàng)和為60,且
為
和
的等比中項(xiàng),可得
,解方程組得
,從而可得數(shù)列
的通項(xiàng)公式;(2) 求數(shù)列
的前
項(xiàng)和
,首先求出數(shù)列
的通項(xiàng)公式,由已知數(shù)列
滿足
,且
,可用迭代法(或疊加法)求出數(shù)列
的通項(xiàng)公式
,從而得
,求數(shù)列
的前
項(xiàng)和
,可用拆項(xiàng)相消法求和.
試題解析:(1) 設(shè)等差數(shù)列
的公差為
(
),
則
2分
解得
4分
∴
. 5分
(2) 由
,
∴![]()
, 6分![]()
.
∴![]()
. 8分
∴
10分![]()
. 12分
考點(diǎn):等差數(shù)列的通項(xiàng)公式,數(shù)列求和.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知各項(xiàng)都不相等的等差數(shù)列{an}的前6項(xiàng)和為60,且a6為a1和a21的等比中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)若數(shù)列{bn}滿足bn+1-bn=an(n∈N*),且b1=3,求數(shù)列{
}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=(x-1)2,g(x)=4(x-1),數(shù)列{an}是各項(xiàng)均不為0的等差數(shù)列,其前n項(xiàng)和為Sn,點(diǎn)(an+1,S2n-1)在函數(shù)f(x)的圖象上;數(shù)列{bn}滿足b1=2,bn≠1,且(bn-bn+1)·g(bn)=f(bn)(n∈N+).
(1)求an并證明數(shù)列{bn-1}是等比數(shù)列;
(2)若數(shù)列{cn}滿足cn=
,證明:c1+c2+c3+…+cn<3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知公差不為零的等差數(shù)列{an}的前4項(xiàng)和為10,且a2,a3,a7成等比數(shù)列.
(1)求通項(xiàng)公式an;
(2)設(shè)bn=2an,求數(shù)列{bn}的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列
的前
項(xiàng)和為
,數(shù)列
滿足:![]()
。
(1)求數(shù)列
的通項(xiàng)公式
;
(2)求數(shù)列
的通項(xiàng)公式
;(3)若
,求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
等差數(shù)列
的各項(xiàng)均為正數(shù),
,前
項(xiàng)和為
,
為等比數(shù)列,
,且
.
(1)求
與
;
(2)求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等差數(shù)列
滿足:
.
(Ⅰ)求
的通項(xiàng)公式及前
項(xiàng)和
;
(Ⅱ)若等比數(shù)列
的前
項(xiàng)和為
,且
,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等差數(shù)列{
}的首項(xiàng)a1=1,公差d>0,且
分別是等比數(shù)列{
}的b2,b3,b4.
(I)求數(shù)列{
}與{{
}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{
}對(duì)任意自然數(shù)n均有
成立,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列
中,
,
,
.
(1)證明:數(shù)列
是等比數(shù)列,并求數(shù)列
的通項(xiàng)公式;
(2)在數(shù)列
中,是否存在連續(xù)三項(xiàng)成等差數(shù)列?若存在,求出所有符合條件的項(xiàng);若不存在,請(qǐng)說(shuō)明理由;
(3)若
且
,
,求證:使得
,
,
成等差數(shù)列的點(diǎn)列
在某一直線上.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com