【題目】已知橢圓![]()
,
為坐標原點,
為橢圓上任意一點,
,
分別為橢圓的左、右焦點,且
,
,
依次成等比數(shù)列,其離心率為
.過點
的動直線
與橢圓相交于
、
兩點.
(1)求橢圓
的標準方程;
(2)當(dāng)
時,求直線
的方程;
(3)在平面直角坐標系
中,若存在與點
不同的點
,使得
成立,求點
的坐標.
【答案】(1)
(2)直線
的方程為
或
(3)
點坐標為![]()
【解析】
(1)根據(jù)條件列關(guān)于
的方程組,解方程組即可得結(jié)果;
(2)驗證當(dāng)直線
的斜率不存在時的情況,當(dāng)直線
的斜率存在時,設(shè)直線
的方程為
,聯(lián)立
,先利用弦長公式求出
,列方程求出
,進而可得直線
的方程;
(3)驗證當(dāng)直線
與
軸平行和垂直時的情況,直線
的斜率存在時,可設(shè)直線
的方程為
,利用(2)中所求,利用韋達定理得到
,
,
三點共線,進而可得
成立,
點坐標也可求出.
解(1)由題意知,![]()
解得
,
,
所以橢圓的標準方程為
;
(2)當(dāng)直線
的斜率不存在時,
,不符合題意;
當(dāng)直線
的斜率存在時,設(shè)直線
的方程為
,
聯(lián)立
,得
,
其判別式
,
設(shè)
、
坐標分別為
,
,
則
,![]()
,
所以
,
整理得
,解得
或
,
所以
或
,
綜上,直線
的方程為
或
;
(3)因為存在點
,使
,
即
,
①當(dāng)直線
與
軸平行時,此時
,
所以點
在
軸上,可設(shè)
點坐標為
;
當(dāng)直線
與
軸垂直時,則
,
的坐標分別為
,
,
由
,得
,解得
或
,
因為
不同于點
,則
點坐標只能為
;
②下面證明,對任意直線
,均有
點,使
成立,
當(dāng)直線
斜率不存在時,由上知,結(jié)論成立;
當(dāng)直線
的斜率存在時,可設(shè)直線
的方程為
,
由(2)中
式得,
,
,
所以
,
易知,點
關(guān)于
軸對稱的點
的坐標為
,
又因為
,
,
所以
,即
,
,
三點共線,
所以
,
即
成立,
所以
點坐標為
.
![]()
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動圓
過定點
,且和直線
相切,動圓圓心
形成的軌跡是曲線
,過點
的直線與曲線
交于
兩個不同的點.
(1)求曲線
的方程;
(2)在曲線
上是否存在定點
,使得以
為直徑的圓恒過點
?若存在,求出
點坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在直角梯形
中,
為
的中點,四邊形
為正方形,將
沿
折起,使點
到達點
,如圖(2),
為
的中點,且
,點
為線段
上的一點.
![]()
(1)證明:
;
(2)當(dāng)
與
夾角最小時,求平面
與平面
所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記![]()
.
(1)求方程
的實數(shù)根;
(2)設(shè)
,
,
均為正整數(shù),且
為最簡根式,若存在
,使得
可唯一表示為
的形式
,試求橢圓
的焦點坐標;
(3)已知
,是否存在
,使得
成立,若存在,試求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列條件:①焦點在
軸上;②焦點在
軸上;③拋物線上橫坐標為
的點
到其焦點
的距離等于
;④拋物線的準線方程是
.
(1)對于頂點在原點
的拋物線
:從以上四個條件中選出兩個適當(dāng)?shù)臈l件,使得拋物線
的方程是
,并說明理由;
(2)過點
的任意一條直線
與
交于
,
不同兩點,試探究是否總有
?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論中
①若空間向量
,
,則
是
的充要條件;
②若
是
的必要不充分條件,則實數(shù)
的取值范圍為
;
③已知
,
為兩個不同平面,
,
為兩條直線,
,
,
,
,則“
”是“
”的充要條件;
④已知向量
為平面
的法向量,
為直線
的方向向量,則
是
的充要條件.
其中正確命題的序號有( )
A.②③B.②④C.②③④D.①②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
,其中
.
(Ⅰ)當(dāng)
為偶函數(shù)時,求函數(shù)
的極值;
(Ⅱ)若函數(shù)
在區(qū)間
上有兩個零點,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點B(0,-2)和橢圓M:
.直線l:y=kx+1與橢圓M交于不同兩點P,Q.
(Ⅰ)求橢圓M的離心率;
(Ⅱ)若
,求△PBQ的面積;
(Ⅲ)設(shè)直線PB與橢圓M的另一個交點為C,當(dāng)C為PB中點時,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|ax-2|,不等式f(x)≤4的解集為{x|-2≤x≤6}.
(1)求實數(shù)a的值;
(2)設(shè)g(x)=f(x)+f(x+3),若存在x∈R,使g(x)-tx≤2成立,求實數(shù)t的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com