【題目】已知函數(shù)
,
(
為常數(shù)).
(1)函數(shù)
的圖象在點(diǎn)
處的切線與函數(shù)
的圖象相切,求實(shí)數(shù)
的值;
(2)若函數(shù)
在定義域上存在單調(diào)減區(qū)間,求實(shí)數(shù)
的取值范圍;
(3)若
,
,且
,都有
成立,求實(shí)數(shù)
的取值范圍.
【答案】(1)
(2)
(3)![]()
【解析】試題分析: (1)求出函數(shù)
的圖象在點(diǎn)
的切線方程,再由直線與拋物線相切,
,求出實(shí)數(shù)
的值; (2)由題意構(gòu)造函數(shù)
,求出
,
在
上有解,再由二次函數(shù)相關(guān)知識(shí)求出
的范圍; (3)假定
,先分別求出函數(shù)
在
上的單調(diào)性,將原不等式轉(zhuǎn)化為
,即
在
上為增函數(shù),求出實(shí)數(shù)
的范圍.
試題解析:(1)因?yàn)?/span>
,所以
,因此
,
所以函數(shù)
的圖象在點(diǎn)
處的切線方程為
,
由
得
.
由
,得
.
(還可以通過(guò)導(dǎo)數(shù)來(lái)求
)
(2)因?yàn)?/span>
,
所以
,
由題意知
在
上有解,
因?yàn)?/span>
,設(shè)
,因?yàn)?/span>
,
則只要
解得
,
所以
的取值范圍是
.
(3)不妨設(shè)
,
因?yàn)楹瘮?shù)
在區(qū)間
上是增函數(shù),
所以
,
函數(shù)
圖象的對(duì)稱軸為
,且
.
當(dāng)
時(shí),函數(shù)
在區(qū)間
上是減函數(shù),
所以
,
所以
,
等價(jià)于
,
即
,
等價(jià)于
在區(qū)間
上是增函數(shù),
等價(jià)于
在區(qū)間
上恒成立,
等價(jià)于
在區(qū)間
上恒成立,所以
,又
,所以
.
點(diǎn)睛: 本題主要考查導(dǎo)數(shù)的應(yīng)用,包括導(dǎo)數(shù)的幾何意義,導(dǎo)數(shù)與單調(diào)性,屬于中檔題.本題在第3問(wèn)中注意解題思想:等價(jià)轉(zhuǎn)換,將原不等式轉(zhuǎn)化為求
在
上為增函數(shù),等價(jià)于
在區(qū)間
上恒成立,分離出
,轉(zhuǎn)化為求
在
上的最小值.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
,將函數(shù)
圖象向下平移
個(gè)單位得到
的圖象,則
(Ⅰ)求函數(shù)
的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)求
在區(qū)間
上的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
:
的左、右焦點(diǎn)分別為
,
,點(diǎn)
在橢圓
上.
(Ⅰ)求橢圓
的標(biāo)準(zhǔn)方程;
(Ⅱ)是否存在斜率為2的直線
,使得當(dāng)直線
與橢圓
有兩個(gè)不同交點(diǎn)
、
時(shí),能在直線
上找到一點(diǎn)
,在橢圓
上找到一點(diǎn)
,滿足
?若存在,求出直線
的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
,
是兩條不同直線,
,
是兩個(gè)不同平面,則下列命題正確的是( )
A. 若
,
垂直于同一平面,則
與
平行
B. 若
,
平行于同一平面,則
與
平行
C. 若
,
不平行,則在
內(nèi)不存在與
平行的直線
D. 若
,
不平行,則
與
不可能垂直于同一平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測(cè)量這些產(chǎn)品的質(zhì)量指標(biāo)值,由測(cè)量結(jié)果得到如圖所示的頻率分布直方圖,質(zhì)量指標(biāo)值落在區(qū)間
,
,
內(nèi)的頻率之比為
.
![]()
(Ⅰ)求這些產(chǎn)品質(zhì)量指標(biāo)值落在區(qū)間
內(nèi)的頻率;
(Ⅱ)用分層抽樣的方法在區(qū)間
內(nèi)抽取一個(gè)容量為6的樣本,將該樣本看成一個(gè)總體,從中任意
抽取2件產(chǎn)品,求這2件產(chǎn)品都在區(qū)間
內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A、B、C為△ABC的三個(gè)內(nèi)角,且其對(duì)邊分別為a、b、c,若cosBcosC﹣sinBsinC=
.
(1)求角A;
(2)若a=2
,b+c=4,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解少年兒童的肥胖是否與常喝碳酸飲料有關(guān),現(xiàn)對(duì)30名六年級(jí)學(xué)生進(jìn)行了問(wèn)卷調(diào)查,得到如下列聯(lián)表(平均每天喝500ml以上為常喝,體重超過(guò)50kg為肥胖):
常喝 | 不常喝 | 合計(jì) | |
肥胖 | 2 | ||
不肥胖 | 18 | ||
合計(jì) | 30 |
已知在全部30人中隨機(jī)抽取1人,抽到肥胖的學(xué)生的概率為
.
(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;
(2)是否有99.5%的把握認(rèn)為肥胖與常喝碳酸飲料有關(guān)?說(shuō)明你的理由;
(3)現(xiàn)從常喝碳酸飲料且肥胖的學(xué)生中(2名女生),抽取2人參加電視節(jié)目,則正好抽到一男一女的概率是多少
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
K | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:K2=
,其中n=a+b+c+d)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著社會(huì)發(fā)展,淮北市在一天的上下班時(shí)段也出現(xiàn)了堵車嚴(yán)重的現(xiàn)象。交通指數(shù)是交通擁堵指數(shù)的簡(jiǎn)稱,是綜合反映道路網(wǎng)暢通或擁堵的概念.記交通指數(shù)為T,其范圍為[0,10],分別有5個(gè)級(jí)別:T∈[0,2)暢通;T∈[2,4)基本暢通;T∈[4,6)輕度擁堵;T∈[6,8)中度擁堵;T∈[8,10]嚴(yán)重?fù)矶拢绺叻鍟r(shí)段(T≥3 ),從淮北市交通指揮中心隨機(jī)選取了一至四馬路之間50個(gè)交通路段,依據(jù)交通指數(shù)數(shù)據(jù)繪制的直方圖如圖所示:
![]()
(I)據(jù)此直方圖估算交通指數(shù)T∈[4,8)時(shí)的中位數(shù)和平均數(shù);
(II)據(jù)此直方圖求出早高峰一至四馬路之間的3個(gè)路段至少有2個(gè)嚴(yán)重?fù)矶碌母怕适嵌嗌伲?/span>
(III)某人上班路上所用時(shí)間若暢通時(shí)為20分鐘,基本暢通為30分鐘,輕度擁堵為35分鐘,中度擁堵為45分鐘,嚴(yán)重?fù)矶聻?0分鐘,求此人用時(shí)間的數(shù)學(xué)期望.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com