分析 (Ⅰ)當(dāng)n≥2時,4Sn-1=(an-1+1)2,4Sn=(an+1)2,n∈N*.兩式相減,得(an+an-1)(an-an-1-2)=0(an-an-1-2)=0,得an-an-1=2即可.
(Ⅱ)由(Ⅰ)知,bn=$\frac{{a}_{n}}{{2}^{n-1}}$=$\frac{2n-1}{{2}^{n-1}}$,利用錯位相減法求Tn即可證明.
解答 解:(Ⅰ)當(dāng)n=1時,4S1=(a1+1)2,即a1=1.
當(dāng)n≥2時,4Sn-1=(an-1+1)2,
又4Sn=(an+1)2,n∈N*.
兩式相減,得(an+an-1)(an-an-1-2)=0(an-an-1-2)=0.
因為數(shù)列{an}的各項均為正數(shù),所以an-an-1=2.
所以數(shù)列{an}是以1為首項,2為公差的等差數(shù)列,
即an=2n-1(n∈N*).
(Ⅱ)由(Ⅰ)知,bn=$\frac{{a}_{n}}{{2}^{n-1}}$=$\frac{2n-1}{{2}^{n-1}}$,
則Tn=$\frac{1}{{2}^{0}}+\frac{3}{{2}^{1}}+\frac{5}{{2}^{2}}+…+\frac{2n-1}{{2}^{n-1}}$…①
$\frac{1}{2}{T}_{n}$=$\frac{1}{{2}^{1}}+\frac{3}{{2}^{2}}+…+\frac{2n-3}{{2}^{n-1}}+\frac{2n-1}{{2}^{n}}$…②
①-②,得$\frac{1}{2}{T}_{n}=\frac{1}{{2}^{0}}+2(\frac{1}{{2}^{1}}+\frac{1}{{2}^{2}}+…+\frac{1}{{2}^{n-1}})-\frac{2n-1}{{2}^{n}}$=1+$\frac{1-\frac{1}{{2}^{n-1}}}{1-\frac{1}{2}}$-$\frac{2n-1}{{2}^{n}}$=3-$\frac{2n+3}{{2}^{n}}$
所以Tn=6-$\frac{2n+3}{{2}^{n-1}}$<6.
點評 本題考查了數(shù)列的遞推式,等差數(shù)列的通項,錯位相減法求和,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | z2<0 | B. | $z+\overline{z}=0$ | ||
| C. | Rez=0且 Imz≠0 | D. | z=|z|i或z=-|z|i,且|z|≠0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2 | B. | -2 | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | -2+i | B. | -2-i | C. | 2+i | D. | 2-i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 4033個 | B. | 4032個 | C. | 2017個 | D. | 2016個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com