【題目】設(shè)f(x)=sin(
x﹣
)﹣2cos2
x+1.
(1)求f(x)的最小正周期;
(2)若函數(shù)y=f(x)與y=g(x)的圖象關(guān)于直線x=1對稱,求當(dāng)x∈[0,
]時(shí),y=g(x)的最大值.
【答案】
(1)解:f(x)=sin
xcos
﹣cos
xsin
﹣cos
x=
sin
x﹣
cos
x=
(
sin
x﹣
cos
x)=
sin(
x﹣
),
∵ω=
,
∴f(x)的最小正周期為T=
=8
(2)解:在y=g(x)的圖象上任取一點(diǎn)(x,g(x)),它關(guān)于x=1的對稱點(diǎn)(2﹣x,g(x)),
由題設(shè)條件,點(diǎn)(2﹣x,g(x))在y=f(x)的圖象上,
從而g(x)=f(2﹣x)=
sin[
(2﹣x)﹣
]=
sin[
﹣
x﹣
]=
cos(
x+
),
當(dāng)0≤x≤
時(shí),
≤
x+
≤
,
則y=g(x)在區(qū)間[0,
]上的最大值為gmax=
cos
= ![]()
【解析】(1)f(x)解析式第一項(xiàng)利用兩角和與差的正弦函數(shù)公式化簡,整理后再利用兩角和與差的正弦函數(shù)公式化為一個(gè)角的正弦函數(shù),找出ω的值,代入周期公式即可求出f(x)的最小正周期;(2)在y=g(x)的圖象上任取一點(diǎn)(x,g(x)),根據(jù)f(x)與g(x)關(guān)于直線x=1對稱,表示出此點(diǎn)的對稱點(diǎn),根據(jù)題意得到對稱點(diǎn)在f(x)上,代入列出關(guān)系式,整理后根據(jù)余弦函數(shù)的定義域與值域即可確定出g(x)的最大值.
【考點(diǎn)精析】掌握兩角和與差的正弦公式是解答本題的根本,需要知道兩角和與差的正弦公式:
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2﹣lnx(a∈R)
(1)當(dāng)a=1時(shí),求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)若x∈(0,1],|f(x)|≥1恒成立,求a的取值范圍;
(3)若a=
,證明:ex﹣1f(x)≥x.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知方程
有4個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)
的取值范圍是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=
,AF=1,M是線段EF的中點(diǎn). ![]()
(1)求證AM∥平面BDE;
(2)求二面角A﹣DF﹣B的大。
(3)試在線段AC上一點(diǎn)P,使得PF與CD所成的角是60°.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)在R上存在導(dǎo)數(shù)f′(x),對任意的x∈R,有f(﹣x)+f(x)=x2 , 且x∈(0,+∞)時(shí),f′(x)>x.若f(2﹣a)﹣f(a)≥2﹣2a,則實(shí)數(shù)a的取值范圍為( )
A.[1,+∞)
B.(﹣∞,1]
C.(﹣∞,2]
D.[2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和Sn=﹣an﹣(
)n﹣1+2(n∈N*),數(shù)列{bn}滿足bn=2nan .
(Ⅰ)求證數(shù)列{bn}是等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=log2
,數(shù)列{
}的前n項(xiàng)和為Tn , 求滿足Tn
(n∈N*)的n的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)0<a<1,已知函數(shù)f(x)=
,若對任意b∈(0,
),函數(shù)g(x)=f(x)﹣b至少有兩個(gè)零點(diǎn),則a的取值范圍是( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生寒假閱讀名著的情況,一名教師對某班級(jí)的所有學(xué)生進(jìn)行了調(diào)查,調(diào)查結(jié)果如下表:
本數(shù) | 0 | 1 | 2 | 3 | 4 | 5 |
男生 | 0 | 1 | 4 | 3 | 2 | 2 |
女生 | 0 | 0 | 1 | 3 | 3 | 1 |
(I)從這班學(xué)生中任選一名男生,一名女生,求這兩名學(xué)生閱讀名著本數(shù)之和為4的概率;
(II)若從閱讀名著不少于4本的學(xué)生中任選4人,設(shè)選到的男學(xué)生人數(shù)為 X,求隨機(jī)變量 X的分布列和數(shù)學(xué)期望;
(III)試判斷男學(xué)生閱讀名著本數(shù)的方差
與女學(xué)生閱讀名著本數(shù)的方差
的大。ㄖ恍鑼懗鼋Y(jié)論).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且對任意正整數(shù)n都有an是n與Sn的等差中項(xiàng),bn=an+1.
(1)求證:數(shù)列{bn}是等比數(shù)列,并求出其通項(xiàng)bn;
(2)若數(shù)列{Cn}滿足Cn=
且數(shù)列{C
}的前n項(xiàng)和為Tn , 證明Tn<2.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com