【題目】直線l過曲線C:y
x2的焦點F,并與曲線C交于A(x1,y1),B(x2,y2)兩點.
(1)求證:x1x2=﹣16;
(2)曲線C分別在點A,B處的切線(與C只有一個公共點,且C在其一側的直線)交于點M,求點M的軌跡.
科目:高中數(shù)學 來源: 題型:
【題目】某人設計一項單人游戲,規(guī)則如下:先將一棋子放在如圖所示正方形
(邊長為3個單位)的頂點
處,然后通過擲骰子來確定棋子沿正方形的邊按逆時針方向行走的單位,如果擲出的點數(shù)為
,則棋子就按逆時針方向行走
個單位,一直循環(huán)下去.則某人拋擲三次次骰子后棋子恰好又回到點
處的所有不同走法共有( )
![]()
A.21種B.24種C.25種D.27種
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動圓
與圓
:
相切,且與圓
:
相內(nèi)切,記圓心
的軌跡為曲線
.設
為曲線
上的一個不在
軸上的動點,
為坐標原點,過點
作
的平行線交曲線
于
,
兩個不同的點.
(Ⅰ)求曲線
的方程;
(Ⅱ)試探究
和
的比值能否為一個常數(shù)?若能,求出這個常數(shù),若不能,請說明理由;
(Ⅲ)記
的面積為
,
的面積為
,令
,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓
的離心率為
,點
在橢圓
上.直線
過點
,且與橢圓
交于
,
兩點,線段
的中點為
.
(I)求橢圓
的方程;
(Ⅱ)點
為坐標原點,延長線段
與橢圓
交于點
,四邊形
能否為平行四邊形?若能,求出此時直線
的方程,若不能,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于頂點在原點的拋物線,給出下列條件:
①焦點在y軸上;
②焦點在x軸上
③拋物線上橫坐標為1的點到焦點的距離等于6;
④拋物線的過焦點且垂直于對稱軸的弦的長為5;
⑤由原點向過焦點的某條直線作垂線,垂足坐標為(2,1)
能使拋物線方程為y2=10x的條件是_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】袋子中有四個小球,分別寫有“四”“校”“聯(lián)”“考”四個字,有放回地從中任取一個小球,取到“聯(lián)”就停止,用隨機模擬的方法估計直到第二次停止的概率:先由計算器產(chǎn)生1到4之間取整數(shù)值的隨機數(shù),且用1,2,3,4表示取出小球上分別寫有“四”“校”“聯(lián)”“考”四個字,以每兩個隨機數(shù)為一組,代表兩次的結果,經(jīng)隨機模擬產(chǎn)生了20組隨機數(shù):13 24 12 32 43 14 24 32 31 21 23 13 32 21 24 42 13 32 23 34據(jù)此估計,直到第二次就停止的概率為______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在多面體
中,四邊形
是正方形,平面
平面
,
.
![]()
(1)求證:
平面
;
(2)在線段
上是否存在點
,使得平面
與平面
所成的銳二面角的大小為
,若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,點P到兩點(0,
),(0,
)的距離之和為4,設點P的軌跡為C,直線y=kx+1與A交于A,B兩點.
(1)寫出C的方程;
(2)若
,求k的值.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com