【題目】農(nóng)科院的專家為了了解新培育的甲、乙兩種麥苗的長(zhǎng)勢(shì)情況,從種植有甲、乙兩種麥苗的兩塊試驗(yàn)田中各抽取6株麥苗測(cè)量株高,得到的數(shù)據(jù)如下(單位:
):
甲:9,10,11,12,10,20
乙:8,14,13,10,12,21
(1)用莖葉圖表示這些數(shù)據(jù):
(2)分別計(jì)算兩組數(shù)據(jù)的中位數(shù)、平均數(shù)與方差,并由此估計(jì)甲、乙兩種麥苗株高的平均數(shù)及方差.
【答案】(1)答案見(jiàn)解析;(2)兩組數(shù)據(jù)中甲種麥苗株高的中位數(shù)為
,平均數(shù)為12,方差為
;乙種麥苗株高的中位數(shù)為
,平均數(shù)為13,方差為
;由此估計(jì)甲種麥苗株高的平均數(shù)為12,方差為
,乙種麥苗株高的平均數(shù)為13,方差為
.
【解析】
(1)直接由已知數(shù)據(jù)畫莖葉圖即可;
(2)由于每組有6個(gè)數(shù),所以中位數(shù)為最中間兩個(gè)數(shù)的平均數(shù),平均數(shù)和方差直接利用公求解,然后利用樣本估計(jì)總體的情況
解:(1)莖葉圖如圖所示
![]()
(2)甲種麥苗株高的中位數(shù)![]()
甲種麥苗株高的平均數(shù)![]()
甲種麥苗株高的方差
![]()
乙種麥苗株高的中位數(shù)![]()
乙種麥苗株高的平均值![]()
乙種麥苗株高的方差
![]()
由此估計(jì)甲種麥苗株高的平均數(shù)為12,方差為
,
乙種麥苗株高的平均數(shù)為13,方差為![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知球O是正三棱錐(底面為正三角形,頂點(diǎn)在底面的射影為底面中心)A-BCD的外接球,BC=3,
,點(diǎn)E在線段BD上,且BD=3BE,過(guò)點(diǎn)E作圓O的截面,則所得截面圓面積的取值范圍是__.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】作出下列函數(shù)的大致圖像,并寫出函數(shù)的單調(diào)區(qū)間和值域.
(1)
;(2)
;(3)
;(4)
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)求函數(shù)
的最小正周期及單調(diào)增區(qū)間;
(2)當(dāng)
時(shí),求函數(shù)
的最大值及最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(Ⅰ)將
的方程化為普通方程,將
的方程化為直角坐標(biāo)方程;
(Ⅱ)已知直線
的參數(shù)方程為
,
為參數(shù),且
,
與
交于點(diǎn)
,
與
交于點(diǎn)
,且
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有一個(gè)關(guān)于平面圖形的命題:如圖,同一平面內(nèi)有兩個(gè)邊長(zhǎng)都是2的正方形,其中一個(gè)的某頂點(diǎn)在另一個(gè)的中心,則這兩個(gè)正方形重疊部分的面積恒為______.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,若
,則
( )
A. 38B. 20C. 10D. 9
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)
是平行四邊形
所在平面外一點(diǎn),如果
,
,
.(1)求證:
是平面
的法向量;
(2)求平行四邊形
的面積.
【答案】(1)證明見(jiàn)解析;(2)
.
【解析】試題分析:
(1)由題意結(jié)合空間向量數(shù)量積的運(yùn)算法則計(jì)算可得
,
.則
,
,結(jié)合線面垂直的判斷定理可得
平面
,即
是平面
的法向量.
(2)利用平面向量的坐標(biāo)計(jì)算可得
,
,
,則
,
,
.
試題解析:
(1)∵
,
.
∴
,
,又
,∴
平面
,
∴
是平面
的法向量.
(2)∵
,
,
∴
,
∴
,
故
,
.
【題型】解答題
【結(jié)束】
19
【題目】(1)求圓心在直線
上,且與直線
相切于點(diǎn)
的圓的方程;
(2)求與圓
外切于點(diǎn)
且半徑為
的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家,某市為了制定合理的節(jié)水方案,對(duì)居民用水情況進(jìn)行調(diào)查,通過(guò)抽樣,獲得某年100為居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照
分成9組,制成了如圖所示的頻率分布直方圖.
(1)求直方圖的
的值;
(2)設(shè)該市有30萬(wàn)居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),說(shuō)明理由.
(3)估計(jì)居民月用水量的中位數(shù).
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com