已知
是橢圓的左、右焦點,O為坐標(biāo)原點,點P
在橢圓上,線段
與y軸的交點M滿足![]()
(Ⅰ) 求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ) 圓O是以
為直徑的圓,直線
:
與圓相切,并與橢圓交于不同的兩點
,當(dāng)
,且滿足
時,求直線
的方程。
(Ⅰ)
(Ⅱ)![]()
【解析】
試題分析:因為
所以M為
的中點,又O為
的中點,所以O(shè)M//
,![]()
軸。
設(shè)橢圓的標(biāo)準(zhǔn)方程為
,c為半焦距,c=1.因為P
在橢圓上,
所以
,
。所以橢圓方程為![]()
(2)圓O的方程為
,因為直線
與圓O相切,所以
。
又直線
與橢圓交于不同的兩點
,設(shè)
,
由方程組
消y得
,
又
,![]()
,
,
。
。所以直線方程為
。
考點:橢圓方程性質(zhì)及直線與圓橢圓的位置關(guān)系
點評:直線與圓相切常用圓心到直線的距離等于圓的半徑,直線與橢圓相交時常聯(lián)立方程,利用韋達(dá)定理找到交點坐標(biāo)與直線橢圓中參數(shù)的關(guān)系,將關(guān)系式再與其他條件結(jié)合
科目:高中數(shù)學(xué) 來源:吉林省長春十一中10-11學(xué)年高二下學(xué)期期末考試數(shù)學(xué)(文) 題型:解答題
已知
是橢圓
的左、右焦點,過點
作
傾斜角為
的直線
交橢圓于
兩點,
.
(1)求橢圓的離心率;
(2)若
,求橢圓的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省高三第四次(4月)周測文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知
是橢圓
的左、右焦點,
是橢圓上位于第一象限內(nèi)的一點,點
也在橢圓上,且滿足
(
是坐標(biāo)原點),
,若橢圓的離心率為
.
(1)若
的面積等于
,求橢圓的方程;
(2)設(shè)直線
與(1)中的橢圓相交于不同的兩點
,已知點
的坐標(biāo)為(
),點
在線段
的垂直平分線上,且
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣西柳鐵一中高三第三次月考文科數(shù)學(xué)試卷 題型:選擇題
已知
是橢圓
的左、右焦點,
是橢圓上任意一點,若點M是
的角平分線上的一點,且滿足
,則
的取值范圍是( )
A、
B、
C、
D、![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:吉林省10-11學(xué)年高二下學(xué)期期末考試數(shù)學(xué)(文) 題型:解答題
已知
是橢圓
的左、右焦點,過點
作
傾斜角為
的直線
交橢圓于
兩點,
.
(1)求橢圓的離心率;
(2)若
,求橢圓的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆江蘇省高二上學(xué)期期中數(shù)學(xué)試卷 題型:填空題
如圖,已知
是橢圓
的左、右焦點,點
在橢圓
上,線段
與圓
相切于點
,且點
為線段
的中點,則橢圓
的離心率為
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com