分析 依題意,利用矩陣變換求得B=(B-1)-1=$[\begin{array}{cc}\frac{2}{2}&\frac{\frac{1}{2}}{2}\\ \frac{0}{2}&\frac{1}{2}\end{array}\right.]$=$[\begin{array}{l}{1}&{\frac{1}{4}}\\{0}&{\frac{1}{2}}\end{array}]$,再利用矩陣乘法的性質(zhì)可求得答案.
解答 解:∵B-1=$[\begin{array}{l}{1}&{-\frac{1}{2}}\\{0}&{2}\end{array}]$,
∴B=(B-1)-1=$[\begin{array}{cc}\frac{2}{2}&\frac{\frac{1}{2}}{2}\\ \frac{0}{2}&\frac{1}{2}\end{array}\right.]$=$[\begin{array}{l}{1}&{\frac{1}{4}}\\{0}&{\frac{1}{2}}\end{array}]$,又A=$[\begin{array}{l}{1}&{2}\\{0}&{-2}\end{array}]$,
∴AB=$[\begin{array}{cc}1&2\\ 0&-2\end{array}]$ $[\begin{array}{l}{1}&{\frac{1}{4}}\\{0}&{\frac{1}{2}}\end{array}]$=$[\begin{array}{cc}1&\frac{5}{4}\\ 0&-1\end{array}]$.
點評 本題考查逆變換與逆矩陣,考查矩陣乘法的性質(zhì),屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (0,1) | B. | (0,2) | C. | (0,+∞) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | A、B、C三點共線 | B. | A、B、D三點共線 | C. | A、C、D三點共線 | D. | B、C、D三點共線 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com