分析 (1)運(yùn)用離心率公式和a,b,c的關(guān)系,解方程可得a,進(jìn)而得到橢圓方程;
(2)由題意設(shè)直線PQ的方程為y=k(x-1)+1(k≠0),代入橢圓方程$\frac{{x}^{2}}{2}$+y2=1,運(yùn)用韋達(dá)定理和直線的斜率公式,化簡計(jì)算即可得到結(jié)論.
解答 (1)解:∵橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過點(diǎn)A(0,-1),且離心率為$\frac{\sqrt{2}}{2}$,
∴b=1,$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,
∴c=1,a=$\sqrt{2}$.
(2)證明:由題設(shè)知,直線PQ的方程為y=k(x-1)+1(k≠2),
代入$\frac{{x}^{2}}{2}$+y2=1,得(1+2k2)x2-4k(k-1)x+2k(k-2)=0.
由已知△>0,
設(shè)P(x1,y1),Q(x2,y2),x1x2≠0,
則x1+x2=$\frac{4k(k-1)}{1+2{k}^{2}}$,x1x2=$\frac{2k(k-2)}{1+2{k}^{2}}$
從而直線AP,AQ的斜率之和
kAP+kAQ=$\frac{{y}_{1}+1}{{x}_{1}}+\frac{{y}_{2}+1}{{x}_{2}}$=$\frac{k{x}_{1}+2-k}{{x}_{1}}$+$\frac{k{x}_{2}+2-k}{{x}_{2}}$
=2k+(2-k)$\frac{{x}_{1}+{x}_{2}}{{x}_{1}{x}_{2}}$
=2k+(2-k)$\frac{4k(k-1)}{2k(k-2)}$=2k-2(k-1)=2.
所以直線AP、AQ斜率之和為定值2.
點(diǎn)評 本題考查橢圓的方程和性質(zhì),主要考查橢圓的離心率和方程的運(yùn)用,聯(lián)立直線方程,運(yùn)用韋達(dá)定理,考查直線的斜率公式,屬于中檔題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 27 | B. | 54 | C. | 108 | D. | 144 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1 | B. | 6 | C. | 2或1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1000 | B. | 2000 | C. | 3000 | D. | 4000 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 是否傾向選擇生育二胎與戶籍無關(guān) | |
| B. | 是否傾向選擇生育二胎與性別無關(guān) | |
| C. | 傾向選擇生育二胎的人員中,男性人數(shù)與女性人數(shù)相同 | |
| D. | 傾向選擇不生育二胎的人員中,農(nóng)村戶籍人數(shù)少于城鎮(zhèn)戶籍人數(shù) |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com