分析 (Ⅰ)推導出AE⊥BC,AE⊥AD,PA⊥AE,從而AE⊥平面PAD,由此能證明AE⊥PD.
(Ⅱ)由AE,AD,AP,兩兩垂直,以A為坐標原點,建立空間直角坐標系,二面角E-AF-C的正弦值.
解答 證明:(Ⅰ)由四邊形ABCD為菱形,∠ABC=60°,![]()
可得△ABC為正三角形.
∵E為BC的中點,∴AE⊥BC.
又BC∥AD,因此AE⊥AD.
∵PA⊥平面ABCD,∴PA⊥AE
而PA∩AD=A,∴AE⊥平面PAD,又PD?平面PAD
∴AE⊥PD.
解:(Ⅱ)由PA⊥平面ABCD,PD,
則在面ABCD射影為AD,
即∠PDA是PD與平面ABCD所成的角,
∴∠PDA=45°,AP=AD=1
由(Ⅰ)知AE,AD,AP,兩兩垂直,以A為坐標原點,
建立如圖所示的空間直角坐標系,又E,F(xiàn)分別為BC,PC的中點,
∴$A(0,0,0),E(\frac{{\sqrt{3}}}{2},0,0),P(0,0,1),C(\frac{{\sqrt{3}}}{2},\frac{1}{2},0),F(xiàn)(\frac{{\sqrt{3}}}{4},\frac{1}{4},\frac{1}{2})$,
$B(\frac{{\sqrt{3}}}{2},-\frac{1}{2},0)D(0,1,0)$,
∴$\overrightarrow{AE}=(\frac{{\sqrt{3}}}{2},0,0),\overrightarrow{AF}=(\frac{{\sqrt{3}}}{4},\frac{1}{4},\frac{1}{2})$.
設平面AEF的一法向量為$\overrightarrow n=({x_1},{y_1},{z_1})$,
則$\left\{\begin{array}{l}\overrightarrow n•\overrightarrow{AE}=0\\ \overrightarrow n•\overrightarrow{AF}=0\end{array}\right.$,$\left\{\begin{array}{l}\frac{{\sqrt{3}}}{2}{x_1}=0\\ \frac{{\sqrt{3}}}{4}{x_1}+\frac{1}{4}{y_1}+\frac{1}{2}{z_1}=0.\end{array}\right.$
令z1=1,則$\overrightarrow n=(0,-2,1)$,
而ABCD是棱形,∴AC⊥BD,又BD⊥PA.PA∩AC=A,
∴BD⊥平面AFC.
$\overrightarrow{BD}=(-\frac{{\sqrt{3}}}{2},\frac{3}{2,}0)$為平面AFC的一個法向量.
∴$cos<\overrightarrow n,\overrightarrow{BD}>=\frac{{\overrightarrow n•\overrightarrow{BD}}}{{|\overrightarrow{n|}•|\overrightarrow{BD}|}}=\frac{-3}{{\sqrt{5}×\sqrt{3}}}=\frac{{\sqrt{15}}}{5}$,
∵$sin<\overrightarrow n,\overrightarrow{BD}>$=$\sqrt{1-(\frac{\sqrt{15}}{5})^{2}}$=$\frac{\sqrt{10}}{5}$,
∴二面角E-AF-C的正弦值為$\frac{{\sqrt{10}}}{5}$.
點評 本題考查線線垂直的證明,考查二面角的正弦值的求法,是中檔題,注意向量法的合理運用.
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 2$\sqrt{34}$ | B. | $\frac{25}{2}$ | C. | 10 | D. | 30 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 充分不必要條件 | B. | 必要不充分條件 | ||
| C. | 充要條件 | D. | 即不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{3}{2}$ | B. | 0 | C. | 2 | D. | $-\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
| 不喜歡戲劇 | 喜歡戲劇 | |
| 男性青年觀眾 | 40 | 10 |
| 女性青年觀眾 | 40 | 60 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com