欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

15.如圖,在四面體ABCD中,平面ABC⊥平面ACD,E,F(xiàn),G分別為AB,AD,AC的中點(diǎn),AC=BC,∠ACD=90°.
(1)求證:AB⊥平面EDC;
(2)若P為FG上任一點(diǎn),證明:EP∥平面BCD.

分析 (1)推導(dǎo)出CD⊥AC,從而CD⊥平面ABC,進(jìn)而CD⊥AB,再求出CE⊥AB,CE⊥AB,由此能證明AB⊥平面EDC.
(2)連結(jié)EF、EG,推導(dǎo)出EF∥平面BCD,EG∥平面BCD,從而平面EFG∥平面BCD,由此能證明EP∥平面BCD.

解答 證明:(1)∵平面ABC⊥平面ACD,∠ACD=90°,
∴CD⊥AC,
∵平面ABC∩平面ACD=AC,CD?平面ACD,
∴CD⊥平面ABC,
又AB?平面ABC,∴CD⊥AB,
∵AC=BC,E為AB的中點(diǎn),∴CE⊥AB,
又CE∩CD=C,CD?平面EDC,CE?平面EDC,
∴AB⊥平面EDC.
(2)連結(jié)EF、EG,∵E、F分別為AB、AD的中點(diǎn),
∴EF∥BD,又BD?平面BCD,EF?平面BCD,
∴EF∥平面BCD,
同理可EG∥平面BCD,且EF∩EG=E,EF、EG?平面BCD,
∴平面EFG∥平面BCD,
∵P是FG上任一點(diǎn),∴EP?平面EFG,
∴EP∥平面BCD.

點(diǎn)評(píng) 本題考查線面垂直、線面平行的證明,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、數(shù)形結(jié)合思想,考查創(chuàng)新意識(shí)、應(yīng)用意識(shí),是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{3}}}{2}$,短軸長(zhǎng)為2.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若圓O:x2+y2=1的切線l與曲線C相交于A、B兩點(diǎn),線段AB的中點(diǎn)為M,求|OM|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若正實(shí)數(shù)x,y滿足x+y=1,則$\frac{y}{x}+\frac{4}{y}$的最小值是8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知集合A={x|-1<x<3},B={x|x<2},則A∩B={x|-1<x<2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知α是第二象限角,且sinα=$\frac{3}{{\sqrt{10}}},tan({α+β})=-2$,則tanβ=$\frac{1}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,直線DE切圓O于點(diǎn)D,直線EO交圓O于A,B兩點(diǎn),DC⊥OB于點(diǎn)C,且DE=2BE,求證:2OC=3BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)f(x)=$\frac{ln|x|}{x}$的圖象大致為( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)$f(x)=\frac{{1+{e^{2x}}}}{{1-{e^{2x}}}}•x$(其中e是自然對(duì)數(shù)的底數(shù))的大致圖象為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知直線l在直角坐標(biāo)系xOy中的參數(shù)方程為$\left\{\begin{array}{l}x=a+tcosθ\\ y=tsinθ\end{array}\right.(t$為參數(shù),θ為傾斜角),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,在極坐標(biāo)系中,曲線的方程為ρ-ρcos2θ-4cosθ=0.
(1)寫出曲線C的直角坐標(biāo)方程;
(2)點(diǎn)Q(a,0),若直線l與曲線C交于A、B兩點(diǎn),求使$\frac{1}{{{{|{QA}|}^2}}}+\frac{1}{{{{|{QB}|}^2}}}$為定值的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案