欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

18.某校后勤處為跟蹤調(diào)查該校餐廳的當(dāng)月的服務(wù)質(zhì)量,兌現(xiàn)獎懲,從就餐的學(xué)生中隨機抽出100位學(xué)生對餐廳服務(wù)質(zhì)量打分(5分制),得到如圖柱狀圖.
(Ⅰ)從樣本中任意選取2名學(xué)生,求恰好有1名學(xué)生的打分不低于4分的概率;
(Ⅱ)若以這100人打分的頻率作為概率,在該校隨機選取2名學(xué)生進(jìn)行打分(學(xué)生打分之間相互獨立)記X表示兩人打分之和,求X的分布列和E(X).
(Ⅲ)根據(jù)(Ⅱ)的計算結(jié)果,后勤處對餐廳服務(wù)質(zhì)量情況定為三個等級,并制定了對餐廳相應(yīng)的獎懲方案,如表所示,設(shè)當(dāng)月獎金為Y(單位:元),求E(Y).
 服務(wù)質(zhì)量評分X X≤5 6≤X≤8 X≥9
 等級 不好 較好 優(yōu)良
 獎懲標(biāo)準(zhǔn)(元)-1000 2000 3000

分析 (Ⅰ)計算“從樣本中任意選取2名學(xué)生,恰好有一名學(xué)生的打分不低于4分”的概率值;
(Ⅱ)由X的可能取值,計算對應(yīng)的概率值,寫出X的分布列,計算數(shù)學(xué)期望;
(Ⅲ)根據(jù)表格寫出Y的分布列,計算對應(yīng)的數(shù)學(xué)期望值.

解答 解:(Ⅰ)設(shè)“從樣本中任意選取2名學(xué)生,求恰好有一名學(xué)生的打分不低于4分”為事件A,
則P(A)=$\frac{{C}_{50}^{1}{•C}_{50}^{1}}{{C}_{100}^{2}}$=$\frac{50}{99}$≈0.51;…(3分)
(Ⅱ)X的可能取值為4,5,6,7,8,9,10;
則P(X=4)=0.2×0.2=0.04,
P(X=5)=2×0.2×0.3=0.12,
P(X=6)=2×0.2×0.3+0.3×0.3=0.21,
P(X=7)=2×0.3×0.3+2×0.2×0.2=0.26,
P(X=8)=2×0.2×0.3+0.3×0.3=0.21,
P(X=9)=2×0.2×0.3=0.12,
P(X=10)=0.2×0.2=0.04;
X的分布列如下:

X45678910
P0.040.120.210.260.210.120.04
X的數(shù)學(xué)期望為E(X)=4×0.04+5×0.12+6×0.21+7×0.26+8×0.21+9×0.12+10×0.04=7;…..(9分)
(Ⅲ)Y的分布列為
Y-100020003000
P0.160.680.16
Y的數(shù)學(xué)期望為E(Y)=-1000×0.16+2000×0.68+3000×0.16=1680.…(12分)

點評 本題考查了頻率分布直方圖與離散型隨機變量的分布列和數(shù)學(xué)期望的計算問題,是綜合性題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若圓x2+y2+4x-2y-a2=0截直線x+y+5=0所得弦的長度為2,則實數(shù)a=(  )
A.±2B.-2C.±4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)A,B分別是直線$y=\frac{{\sqrt{2}}}{2}x$和$y=-\frac{{\sqrt{2}}}{2}x$上的動點,且$|AB|=2\sqrt{2}$.設(shè)O為坐標(biāo)原點,動點P滿足$\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{OB}$.
(Ⅰ) 求動點P的軌跡方程C1;
(Ⅱ)一直雙曲線C2以C1的上頂點為焦點,且一條漸近線方程為x+2y=0,求雙曲線C2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓C;$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>c)的左、右焦點分別為F1(-c,0)、F2(c,0),過原點O的直線(與x軸不重合)與橢圓C相交于D、Q兩點,且|DF1|+|QF1|=4,P為橢圓C上的動點,△PF1F2的面積的最大值為$\sqrt{3}$.
(1)求橢圓C的離心率;
(2)若過左焦點F1的任意直線與橢圓C相交于S、T兩點,求$\overrightarrow{OS}$$•\overrightarrow{OT}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè){an}是公差為2的等差數(shù)列,bn=a${\;}_{{2}^{n}}$,若{bn}為等比數(shù)列,則b1+b2+b3+b4+b5=( 。
A.142B.124C.128D.144

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知x∈R,則“x>2”是“x2-3x+2>0”成立的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知f(x)=2$\sqrt{3}$sinxcos-cos(π+2x).
(Ⅰ)求f(x)的單調(diào)增區(qū)間;
(Ⅱ)在△ABC中,角A,B,C的對邊分別是a,b,c,若f(C)=1,c=$\sqrt{3}$,a+b=2$\sqrt{3}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知a,b∈R,i為虛數(shù)單位,當(dāng)a+bi=i(2-i)時,則$\frac{b+ai}{a-bi}$=( 。
A.iB.-iC.1+iD.1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$經(jīng)過點$P(2,\sqrt{2})$,離心率$e=\frac{{\sqrt{2}}}{2}$,直線l的方程為 x=4.
(1)求橢圓C的方程;
(2)經(jīng)過橢圓右焦點e的任一直線(不經(jīng)過點a=-1)與橢圓交于兩點A,B,設(shè)直線AB與l相交于點M,記PA,PB,PM的斜率分別為k1,k2,k3,問:k1+k2-2k3是否為定值,若是,求出此定值,若不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案