欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

11.若樣本數(shù)據(jù)x1,x2,…,x10的平均數(shù)為8,則數(shù)據(jù)2x1-1,2x2-1,…,2x10-1的平均數(shù)為15.

分析 根據(jù)平均數(shù)與方差的公式即可求出數(shù)據(jù)2x1-1,2x2-1,…,2x10-1的平均數(shù).

解答 解:∵樣本數(shù)據(jù)x1,x2,…,x10的平均數(shù)是10,
∴$\overline{x}$=$\frac{1}{10}$(x1+x2+…+x10)=8;
∴數(shù)據(jù)2x1-1,2x2-1,…,2x10-1的平均數(shù)是:
$\overline{x′}$=$\frac{1}{10}$[(2x1-1)+(2x2-1)+…+(2x10-1)]
=2×$\frac{1}{10}$(x1+x2+…+x10)-1=2×8-1=15.
故答案為:15.

點評 本題考查了計算數(shù)據(jù)的平均數(shù)問題,解題時應(yīng)根據(jù)公式進(jìn)行計算,也可以利用平均數(shù)的性質(zhì)直接得出答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右頂點為A,x軸上有一點Q(2a,0),若C上存在一點P,使AP⊥PQ,則雙曲線離心率的取值范圍是( 。
A.$e>\frac{{\sqrt{6}}}{2}$B.$1<e<\frac{{\sqrt{6}}}{2}$C.$e≥\frac{{\sqrt{6}}}{3}$D.$1<e<\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=|x-a|,其中a>1.
(1)當(dāng)a=3時,求不等式f(x)≥4-|x-4|的解集;
(2)若函數(shù)h(x)=f(2x+a)-2f(x)的圖象與x、y軸圍成的三角形面積大于a+4,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則下列判斷錯誤的是( 。
A.f($\frac{π}{3}$)=1
B.函數(shù)f(x)的圖象關(guān)于x=$\frac{7π}{6}$對稱
C.函數(shù)f(x)的圖象關(guān)于(-$\frac{11π}{2}$,0)對稱
D.函數(shù)f(x)的圖象向右平移$\frac{π}{12}$個單位后得到y(tǒng)=Asinωx的圖象

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓$G:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的長軸長為4,離心率$e=\frac{{\sqrt{3}}}{2}$.
(Ⅰ)求橢圓G的方程;
(Ⅱ)設(shè)過橢圓G的上頂點A的直線l與橢圓G的另一個交點為B,與x軸交于點C,線段AB的中點為D,線段AB的垂直平分線分別交x軸、y軸于P、Q兩點.問:是否存在直線l使△PDC與△POQ的面積相等(O為坐標(biāo)原點)?若存在,求出所有滿足條件的直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}\frac{1}{x},x>1\\-x-2,x≤1\end{array}\right.$,則f[f(2)]=-$\frac{5}{2}$,不等式$f(a)>\frac{1}{2}$的解集是(-∞,-$\frac{5}{2}$)∪(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合A={x|x2≥16},B={m},若A∪B=A,則實數(shù)m的取值范圍是( 。
A.(-∞,-4)B.[4,+∞)C.[-4,4]D.(-∞,-4]∪[4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{x+y-2≥0}\\{x-y≥0}\\{2x-y-4≤0}\end{array}\right.$,則目標(biāo)函數(shù)z=2x+y的最大值為( 。
A.3B.4C.6D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知等差數(shù)列{an}公差為d,前n項和{sn},則下列描述不一定正確的是( 。
A.若a1>0,d>0,則n唯一確定時$s_n^{\;}$也唯一確定
B.若a1>0,d<0,則n唯一確定時$s_n^{\;}$也唯一確定
C.若a1>0,d>0,則$s_n^{\;}$唯一確定時n也唯一確定
D.若a1>0,d<0,則$s_n^{\;}$唯一確定時n也唯一確定

查看答案和解析>>

同步練習(xí)冊答案