已知橢圓
兩焦點(diǎn)坐標(biāo)分別為
,
,且經(jīng)過點(diǎn)
.
(Ⅰ)求橢圓
的標(biāo)準(zhǔn)方程;
(Ⅱ)已知點(diǎn)
,直線
與橢圓
交于兩點(diǎn)
.若△
是以
為直角頂點(diǎn)的等腰直角三角形,試求直線
的方程.
(Ⅰ)
(Ⅱ)
或
或
.
解析試題分析:(Ⅰ)由橢圓的定義可求得
和
,再根據(jù)
,可求得
。即可求出橢圓方程。(Ⅱ)由點(diǎn)斜式設(shè)出直線方程,然后聯(lián)立,消掉
(或
)得到關(guān)于
的一元二次方程。因?yàn)橛袃蓚(gè)交點(diǎn)所以判別式大于0,再根據(jù)韋達(dá)定理得出根與系數(shù)的關(guān)系。根據(jù)題意可知
且
。用這兩個(gè)條件可列出兩個(gè)方程。如用直線垂直來解需討論斜率存在與否,為了省去討論可轉(zhuǎn)化為向量垂直問題用數(shù)量積公式求解, 注意討論根的取舍。
試題解析:解:(Ⅰ)設(shè)橢圓標(biāo)準(zhǔn)方程為
.依題意
,所以
.
又
,所以
.
于是橢圓
的標(biāo)準(zhǔn)方程為
. 5分
(Ⅱ)依題意,顯然直線
斜率存在.設(shè)直線
的方程為
,則
由
得
.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/3c/9/1gran2.png" style="vertical-align:middle;" />,得
. ①
設(shè)
,線段
中點(diǎn)為
,則![]()
于是
.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/7b/1/7wccx1.png" style="vertical-align:middle;" />,線段
中點(diǎn)為
,所以
.
(1)當(dāng)
,即
且
時(shí),
,整理得
. ②
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/06/0/viti12.png" style="vertical-align:middle;" />,
,
所以![]()
,
整理得
,解得
或
.
當(dāng)
時(shí),由②不合題意舍去.
由①②知,
時(shí),
.
(2)當(dāng)
時(shí),
(。┤
時(shí),直線
的方程為
,代入橢圓方程中得
.
設(shè)
,
,依題意,若△
為等腰直角三角形,則
.即
,解得
或
.
不合題意舍去,
即此時(shí)直線
的方程為
.
(ⅱ)若
且
時(shí),即直線
過原點(diǎn).依橢圓的對稱性有
,則依題意不能有
,即此時(shí)不滿足△
為等腰直角三角形.
綜上,直線
的方程為
或
或![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓的方程為
,斜率為1的直線不經(jīng)過原點(diǎn)
,而且與橢圓相交于
兩點(diǎn),
為線段
的中點(diǎn).
(1)問:直線
與
能否垂直?若能,
之間滿足什么關(guān)系;若不能,說明理由;
(2)已知
為
的中點(diǎn),且
點(diǎn)在橢圓上.若
,求橢圓的離心率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知橢圓
的右頂點(diǎn)為A(2,0),點(diǎn)P(2e,
)在橢圓上(e為橢圓的離心率).![]()
(1)求橢圓的方程;
(2)若點(diǎn)B,C(C在第一象限)都在橢圓上,滿足
,且
,求實(shí)數(shù)λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系
中,已知過點(diǎn)
的橢圓
:
的右焦點(diǎn)為
,過焦點(diǎn)
且與
軸不重合的直線與橢圓
交于
,
兩點(diǎn),點(diǎn)
關(guān)于坐標(biāo)原點(diǎn)的對稱點(diǎn)為
,直線
,
分別交橢圓
的右準(zhǔn)線
于
,
兩點(diǎn).![]()
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)
的坐標(biāo)為
,試求直線
的方程;
(3)記
,
兩點(diǎn)的縱坐標(biāo)分別為
,
,試問
是否為定值?若是,請求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知
是橢圓
的右焦點(diǎn);圓
與
軸交于
兩點(diǎn),其中
是橢圓
的左焦點(diǎn).![]()
(1)求橢圓
的離心率;
(2)設(shè)圓
與
軸的正半軸的交點(diǎn)為
,點(diǎn)
是點(diǎn)
關(guān)于
軸的對稱點(diǎn),試判斷直線
與圓
的位置關(guān)系;
(3)設(shè)直線
與圓
交于另一點(diǎn)
,若
的面積為
,求橢圓
的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線
:
和⊙
:
,過拋物線
上一點(diǎn)
作兩條直線與⊙
相切于
、
兩點(diǎn),分別交拋物線為E、F兩點(diǎn),圓心點(diǎn)
到拋物線準(zhǔn)線的距離為
.![]()
(1)求拋物線
的方程;
(2)當(dāng)
的角平分線垂直
軸時(shí),求直線
的斜率;
(3)若直線
在
軸上的截距為
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的中心在原點(diǎn),焦點(diǎn)在
軸上,以兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)為頂點(diǎn)的四邊形是一個(gè)面積為
的正方形(記為
)
(Ⅰ)求橢圓
的方程
(Ⅱ)設(shè)點(diǎn)
是直線
與
軸的交點(diǎn),過點(diǎn)
的直線
與橢圓
相交于
兩點(diǎn),當(dāng)線段
的中點(diǎn)落在正方形
內(nèi)(包括邊界)時(shí),求直線
斜率的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的左、右焦點(diǎn)分別為
,橢圓的離心率為
,且橢圓C經(jīng)過點(diǎn)
.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若線段
是橢圓過點(diǎn)
的弦,且
,求
內(nèi)切圓面積最大時(shí)實(shí)數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的離心率為
,其左焦點(diǎn)
到點(diǎn)
的距離為
.
(1)求橢圓的方程;
(2)過右焦點(diǎn)
的直線與橢圓交于不同的兩點(diǎn)
、
,則
內(nèi)切圓的圓面積是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)的直線方程;若不存在,請說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com