分析 (1)由誘導(dǎo)公式,正弦定理化簡已知可得sinCcosB=(-2sinA-sinB)cosC,利用三角函數(shù)恒等變換的應(yīng)用化簡可得
cosC=-$\frac{1}{2}$,即可得解C的值.
(2)利用三角形面積公式可求得ab=4,利用余弦定理即可求得a+b的值.
解答 解:(1)∵ccosB=(2a+b)cos(π-C).
∴sinCcosB=(-2sinA-sinB)cosC,
∴sin(B+C)=-2sinAcosC,
∴cosC=-$\frac{1}{2}$,
∴C=$\frac{2π}{3}$.
(2)由${S}_{△ABC}=\frac{1}{2}absinC=\sqrt{3}$,可得:ab=4,
由余弦定理可得:c2=a2+b2+ab=(a+b)2-ab=16,
解得:a+b=2$\sqrt{5}$.
點評 本題主要考查了誘導(dǎo)公式,正弦定理,余弦定理,三角形面積公式,三角函數(shù)恒等變換的應(yīng)用,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 5$\sqrt{3}$ | B. | 4$\sqrt{3}$ | C. | 3$\sqrt{3}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{2}$ | B. | $\frac{3}{4}$ | C. | $\frac{4}{7}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 若a2>b2,則a>b | B. | 若|a|>b,則a2>b2 | C. | 若a>|b|,則a2>b2 | D. | 若a>b,則a2>b2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2$\sqrt{2}$ | B. | 2$\sqrt{3}$ | C. | 1 | D. | 2 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com