| A. | $\frac{\sqrt{10}}{5}$ | B. | $\frac{\sqrt{5}}{5}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
分析 利用線面、面面垂直的判定和性質(zhì)定理得到CQ⊥平面ABE,再利用DP∥CQ可證明DP⊥平面ABE,從而得到∠DAP是所求的線面角.
解答 解:設(shè)P,Q分別為AE,AB的中點(diǎn),
則PQ∥EB,且EB=2PQ,
∴四邊形DCQP是平行四邊形,
∴DP∥CQ![]()
設(shè)在△ABC中,AC=BC=2a,AQ=BQ,
∴CQ⊥AB.
而DC⊥平面ABC,EB∥DC,
∴EB⊥平面ABC.
而EB?平面ABE,
∴平面ABE⊥平面ABC,
∴CQ⊥平面ABE
∴DP⊥平面ABE,
∴直線AD在平面ABE內(nèi)的射影是AP,
∴直線AD與平面ABE所成角是∠DAP.
在Rt△APD中,AD=$\sqrt{{AC}^{2}+{DC}^{2}}$=$\sqrt{5}$a,
DP=CQ=2asin∠CAQ=2sin30°=a.
∴sin∠DAP=$\frac{DP}{AD}$=$\frac{a}{\sqrt{5}a}$=$\frac{\sqrt{5}}{5}$,
故選:B.
點(diǎn)評(píng) 本題考查平面與平面垂直的證明,考查直線與平面所成角的正弦值的求法.解題時(shí)要認(rèn)真審題,合理地化空間問(wèn)題為平面問(wèn)題,注意空間思維能力和推理能力的培養(yǎng)
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | a<c<b | B. | a<b<c | C. | c<a<b | D. | b<c<a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 充分不必要 | B. | 必要不充分 | ||
| C. | 充要 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 若a4>0,則a2016<0 | B. | 若a5>0,則a2015<0 | ||
| C. | 若a4>0,則S2016>0 | D. | 若a5>0,則S2015>0 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com