| A. | 2$\sqrt{5}$ | B. | 10 | C. | 12 | D. | 8 |
分析 根據(jù)題意作出可行域,平移向量,利用向量數(shù)量積的幾何意義即求在$\overrightarrow{a}$上的投影判斷AB兩點(diǎn)的位置,即可得到結(jié)論
解答
解:平面區(qū)域$\left\{\begin{array}{l}{2x-y-4≤0}\\{x-2y+4≥0}\\{x+y-2≥0}\end{array}\right.$的可行域如圖:平移$\overrightarrow{a}$至可行域的M,
由可行域可知,$\overrightarrow{MN}•\overrightarrow{a}$的最大值就是$\overrightarrow{MN}$在$\overrightarrow{a}$上的投影取得最大值.
由$\left\{\begin{array}{l}{2x-y-4=0}\\{x+y-2=0}\end{array}\right.$可得M(2,0),由$\left\{\begin{array}{l}{2x-y-4=0}\\{x-2y+4=0}\end{array}\right.$得到N(4,4),$\overrightarrow{MN}$=(2,4),
此時(shí)$\overrightarrow{MN}$•$\overrightarrow{a}$=1×2+2×4=10.
故選:B.
點(diǎn)評(píng) 本題考查線性規(guī)劃、向量的坐標(biāo)表示、平面向量數(shù)量積的幾何意義等基礎(chǔ)知識(shí),考查數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 6 | B. | 9 | C. | 10 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1 | B. | -1 | C. | -i | D. | i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 充分非必要條件 | B. | 必要非充分條件 | ||
| C. | 充要條件 | D. | 既非充分又非必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 存在t∈R,使f(x)≥2在[t-$\frac{1}{2}$,t+$\frac{1}{2}$]上恒成立 | |
| B. | 存在t∈R,使0≤f(x)≤2在[t-$\frac{1}{2}$,t+$\frac{1}{2}$]上恒成立 | |
| C. | 存在t∈R,使f(x)在[t-$\frac{1}{2}$,t+$\frac{1}{2}$]上始終存在反函數(shù) | |
| D. | 存在t∈R+,使f(x)在[t-$\frac{1}{2}$,t+$\frac{1}{2}$]上始終存在反函數(shù) |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com