| A. | $\frac{2}{3}$ | B. | $\frac{5}{3}$ | C. | $\frac{5}{6}$ | D. | $\frac{3}{4}$ |
分析 由已知正項(xiàng)等比數(shù)列{an}滿足:a7=a6+2a5,我們易求出數(shù)列的公比,再結(jié)合存在兩項(xiàng)am、an使得$\sqrt{{a_m}{a_n}}=32{a_1}$,我們可以求出正整數(shù)m,n的和,再結(jié)合基本不等式中“1”的活用,即可得到答案.
解答 解:設(shè)等比數(shù)列{an}的首項(xiàng)為a1,公比為q,
∵a7=a6+2a5,則a1•q6=a1•q5+2a1•q4
即q2-q-2=0,解得q=2或q=-1(舍去)
若$\sqrt{{a_m}{a_n}}=32{a_1}$,即a1•${2}^{\frac{m+n-2}{2}}$=32a1,
則m+n=12,
則12($\frac{1}{m}$+$\frac{4}{n}$)=(m+n)($\frac{1}{m}$+$\frac{4}{n}$)=5+($\frac{n}{m}$+$\frac{4m}{n}$)
≥5+2$\sqrt{\frac{n}{m}•\frac{4m}{n}}$=9,
當(dāng)且僅當(dāng)n=2m=8時(shí),$\frac{1}{m}$+$\frac{4}{n}$的最小值為$\frac{9}{12}$=$\frac{3}{4}$,
故選D.
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是等比數(shù)列的性質(zhì),基本不等式,其中根據(jù)已知中正項(xiàng)等比數(shù)列{an}滿足:a7=a6+2a5,若存在兩項(xiàng)am、an使得$\sqrt{{a_m}{a_n}}=32{a_1}$,將問題轉(zhuǎn)化為用基本不等式求最值是解答本題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | tanα>sinα>α | B. | α>tanα>sinα | C. | sinα>α>tanα | D. | tanα>α>sinα |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 若m∥α,m∥β,則α∥β | |
| B. | 若m⊥α,m?β,則α⊥β | |
| C. | 若m?α,n?α,m,n是異面直線,則n與α相交 | |
| D. | 若m?α,n?α,l⊥m,l⊥n,則l⊥α |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com