分析 (1)由題意需要畫出圓臺的側(cè)面展開圖,并還原成圓錐展開的扇形,則所求的最短距離是平面圖形兩點連線;
(2)根據(jù)條件求出扇形的圓心角以及半徑長,在求出最短的距離;
(3)畫出圓臺的側(cè)面展開圖,有(1)中結(jié)論,可得圓心角θ=$\frac{π}{2}$,進而得到答案.
解答 解:(1)畫出圓臺的側(cè)面展開圖,![]()
并還原成圓錐展開的扇形,且設(shè)扇形的圓心為O.
有圖得:所求的最短距離是MB',
設(shè)OA=R,圓心角是θ,則由題意知,
10π=θR ①,20π=θ(20+R) ②,由①②解得,θ=$\frac{π}{2}$,R=20,
∴OM=30,OB'=40,則MB'=50cm.
故繩子最短的長度為:50cm.
(2)作OC垂直于B'M交于D,OC是頂點O到MB'的最短距離,
則DC是MB'與弧AA'的最短距離,DC=OC-OD=$\frac{OM•OB′}{MB′}$-20=4cm,
即繩子上各點與上底面圓周的最短距離是:4cm.
(3)畫出圓臺的側(cè)面展開圖,![]()
∵圓錐底面半徑為r,母線長為4r,
則圓心角θ=$\frac{π}{2}$,
故從底面邊緣一點A出發(fā)繞圓錐側(cè)面一周再回到A的最短距離為:4$\sqrt{2}$r.
點評 本題考查了在幾何體表面的最短距離的求出,一般方法是把幾何體的側(cè)面展開后,根據(jù)題意作出最短距離即兩點連線,結(jié)合條件求出,考查了轉(zhuǎn)化思想.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 充分不必要條件 | B. | 必要不充分條件 | ||
| C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | a>b>c | B. | a>c>b | C. | b>a>c | D. | c>a>b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | ($\frac{π}{6}$,$\frac{π}{4}$) | B. | ($\frac{π}{4}$,$\frac{π}{2}$) | C. | ($\frac{π}{4}$,$\frac{π}{2}$] | D. | ($\frac{π}{4}$,$\frac{π}{3}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com