(本題滿分14分)設(shè)函數(shù)
.
(1)求
的最小正周期.
(2)若函數(shù)
與
的圖像關(guān)于直線
對(duì)稱,求當(dāng)
時(shí)
的最大值.
解:(1)
=![]()
=
=
. ………………5分
故
的最小正周期為
………………6分
(2)解法一: 在
的圖象上任取一點(diǎn)
,它關(guān)于
的對(duì)稱點(diǎn)
…………………………8分
由題設(shè)條件,點(diǎn)
在
的圖象上,從而
=
=
…10分
當(dāng)
時(shí),
,
………………………12分
因此
在區(qū)間
上的最大值為
………………14分
解法二:因區(qū)間
關(guān)于x = 1的對(duì)稱區(qū)間為
,且
與
的圖象關(guān)于x = 1對(duì)稱,故
在
上的最大值就是
在
上的最大………10分
由(1)知
=
,當(dāng)
時(shí),
………12分
因此
在
上的最大值為
. ……………14分
【解析】略
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿分14分)
設(shè)函數(shù)
,
。
(1)若
,過兩點(diǎn)
和
的中點(diǎn)作
軸的垂線交曲線
于點(diǎn)
,求證:曲線
在點(diǎn)
處的切線
過點(diǎn)
;
(2)若
,當(dāng)
時(shí)
恒成立,求實(shí)數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿分14分)設(shè)函數(shù)
(1)求函數(shù)
的單調(diào)區(qū)間;(2)求
在[—1,2]上的最小值; (3)當(dāng)
時(shí),用數(shù)學(xué)歸納法證明:![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011——2012學(xué)年湖北省洪湖二中高三八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本題滿分14分)設(shè)橢圓
的左、右焦點(diǎn)分別為F1與
F2,直線
過橢圓的一個(gè)焦點(diǎn)F2且與橢圓交于P、Q兩點(diǎn),若
的周長(zhǎng)為
。
(1)求橢圓C的方程;
(2)設(shè)橢圓C經(jīng)過伸縮變換
變成曲線
,直線
與曲線
相切
且與橢圓C交于不同的兩點(diǎn)A、B,若
,求
面積的取值范圍。(O為坐標(biāo)原點(diǎn))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省杭州市高三寒假作業(yè)數(shù)學(xué)卷三 題型:解答題
(本題滿分14分)設(shè)M是由滿足下列條件的函數(shù)
構(gòu)成的集合:“①方
有實(shí)數(shù)根;②函數(shù)
的導(dǎo)數(shù)
滿足
”
(I)證明:函數(shù)
是集合M中的元素;
(II)證明:函數(shù)
具有下面的性質(zhì):對(duì)于任意![]()
,都存在
,使得等式
成立。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省揭陽(yáng)市高三調(diào)研檢測(cè)數(shù)學(xué)理卷 題型:解答題
本題滿分14分)
設(shè)函數(shù)
.
(1)若
,求函數(shù)
的極值;
(2)若
,試確定
的單調(diào)性;
(3)記
,且
在
上的最大值為M,證明:
.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com