【題目】如圖所示,直三棱柱
的底面為等腰直角三角形,其中
,點(diǎn)
是線段
的中點(diǎn).
![]()
(Ⅰ)若點(diǎn)
滿足
,且
,求
的值;
(Ⅱ)求二面角
的余弦值.
【答案】(Ⅰ)2;(Ⅱ)
.
【解析】
(I)根據(jù)直三棱柱
的性質(zhì)及所給數(shù)據(jù),將
轉(zhuǎn)化為
,則在
中直接求解即可;
(II)建立空間直角坐標(biāo)系,利用法向量即可求二面角的余弦值.
(Ⅰ)因?yàn)樵趥?cè)面
中,
,
,點(diǎn)
是棱
的中點(diǎn),
所以
,
,則
.
因?yàn)?/span>
平面
,所以
.
由
,得
平面
,
所以
,又因?yàn)?/span>
,
,所以
平面
,
所以
.
在
中,
,
,
,
,
則
,所以
,
,
又因?yàn)?/span>
,所以
.
(Ⅱ)
![]()
如圖:以
為坐標(biāo)原點(diǎn),
,
,
分別為
,
,
軸建立空間直角坐標(biāo)系,
則
,
,
,
,
,
,
,
,
設(shè)平面
的一個(gè)法向量為
,
則![]()
,令
,得
,
設(shè)平面
的一個(gè)法向量為
,
則![]()
令
,得
,
設(shè)二面角
的平面角為
,
則
,
故二面角
的余弦值為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax﹣(a+2)lnx
2,其中a∈R.
(1)當(dāng)a=4時(shí),求函數(shù)f(x)的極值;
(2)試討論函數(shù)f(x)在(1,e)上的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某省確定從2021年開(kāi)始,高考采用“
”的模式,取消文理分科,即“3”包括語(yǔ)文、數(shù)學(xué)、外語(yǔ),為必考科目;“1”表示從物理、歷史中任選一門(mén);“2”則是從生物、化學(xué)、地理、政治中選擇兩門(mén),共計(jì)六門(mén)考試科目.某高中從高一年級(jí)2000名學(xué)生(其中女生900人)中,采用分層抽樣的方法抽取
名學(xué)生進(jìn)行調(diào)查.
(1)已知抽取的
名學(xué)生中含男生110人,求
的值及抽取到的女生人數(shù);
(2)學(xué)校計(jì)劃在高二上學(xué)期開(kāi)設(shè)選修中的“物理”和“歷史”兩個(gè)科目,為了了解學(xué)生對(duì)這兩個(gè)科目的選課情況,對(duì)在(1)的條件下抽取到的
名學(xué)生進(jìn)行問(wèn)卷調(diào)杳(假定每名學(xué)生在這兩個(gè)科目中必須洗擇一個(gè)科目且只能選擇一個(gè)科目).下表是根據(jù)調(diào)查結(jié)果得到的
列聯(lián)表,請(qǐng)將列聯(lián)表補(bǔ)充完整,并判斷是否有
的把握認(rèn)為選擇科目與性別有關(guān)?說(shuō)明你的理由;
性別 | 選擇物理 | 選擇歷史 | 總計(jì) |
男生 | 50 | ||
女生 | 30 | ||
總計(jì) |
(3)在(2)的條件下,從抽取的選擇“物理”的學(xué)生中按分層抽樣抽取6人,再?gòu)倪@6名學(xué)生中抽取2人,對(duì)“物理”的選課意向作深入了解,求2人中至少有1名女生的概率.
附:
,其中
.
| 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年,國(guó)家逐步推行全新的高考制度.新高考不再分文理科,某省采用3+3模式,其中語(yǔ)文、數(shù)學(xué)、外語(yǔ)三科為必考科目,滿分各150分,另外考生還要依據(jù)想考取的高校及專(zhuān)業(yè)的要求,結(jié)合自己的興趣愛(ài)好等因素,在思想政治、歷史、地理、物理、化學(xué)、生物6門(mén)科目中自選3門(mén)參加考試(6選3),每科目滿分100分.為了應(yīng)對(duì)新高考,某高中從高一年級(jí)1000名學(xué)生(其中男生550人,女生450人)中,采用分層抽樣的方法從中抽取
名學(xué)生進(jìn)行調(diào)查.
(1)已知抽取的
名學(xué)生中含男生55人,求
的值;
(2)學(xué)校計(jì)劃在高一上學(xué)期開(kāi)設(shè)選修中的“物理”和“地理”兩個(gè)科目,為了了解學(xué)生對(duì)這兩個(gè)科目的選課情況,對(duì)在(1)的條件下抽取到的
名學(xué)生進(jìn)行問(wèn)卷調(diào)查(假定每名學(xué)生在這兩個(gè)科目中必須選擇一個(gè)科目且只能選擇一個(gè)科目),下表是根據(jù)調(diào)查結(jié)果得到的
列聯(lián)表. 請(qǐng)將列聯(lián)表補(bǔ)充完整,并判斷是否有 99%的把握認(rèn)為選擇科目與性別有關(guān)?說(shuō)明你的理由;
(3)在抽取到的女生中按(2)中的選課情況進(jìn)行分層抽樣,從中抽出9名女生,再?gòu)倪@9名女生中抽取4人,設(shè)這4人中選擇“地理”的人數(shù)為
,求
的分布列及期望.
![]()
附:
,![]()
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
,且
在區(qū)間
上是增函數(shù).
(1)求實(shí)數(shù)
的值組成的集合
;
(2)設(shè)函數(shù)
的兩個(gè)極值點(diǎn)為
、
,試問(wèn):是否存在實(shí)數(shù)
,使得不等式
對(duì)任意
及
恒成立?若存在,求
的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
過(guò)點(diǎn)
,且其離心率為
,過(guò)坐標(biāo)原點(diǎn)
作兩條互相垂直的射線與橢圓
分別相交于
,
兩點(diǎn).
(1)求橢圓
的方程;
(2)是否存在圓心在原點(diǎn)的定圓與直線
總相切?若存在,求定圓的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且2ccosB=2a+b.
(1)求角C的大;
(2)若△ABC的面積等于
,求ab的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】手機(jī)運(yùn)動(dòng)計(jì)步已成為一種時(shí)尚,某中學(xué)統(tǒng)計(jì)了該校教職工一天行走步數(shù)(單位:百步),繪制出如下頻率分布直方圖:
![]()
(Ⅰ)求直方圖中
的值,并由頻率分布直方圖估計(jì)該校教職工一天步行數(shù)的中位數(shù);
(Ⅱ)若該校有教職工175人,試估計(jì)一天行走步數(shù)不大于130百步的人數(shù);
(Ⅲ)在(Ⅱ)的條件下該校從行走步數(shù)大于150百步的3組教職工中用分層抽樣的方法選取6人參加遠(yuǎn)足活動(dòng),再?gòu)?/span>6人中選取2人擔(dān)任領(lǐng)隊(duì),求這兩人均來(lái)自區(qū)間
的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線
的參數(shù)方程為
(t為參數(shù),
).在以O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線
的極坐標(biāo)方程為
.
(1)求
和
的普通方程;
(2)若直線l的極坐標(biāo)方程為
,其中
滿足
,若曲線
和
的公共點(diǎn)均在l上,求
.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com