| 3 |
| 4 |
| a |
| sinA |
| b |
| sinB |
| c |
| sinC |
| ||
| 2 |
| 3 |
| 4 |
| 3 |
| 4 |
科目:高中數(shù)學 來源: 題型:
| AM |
| c |
| AN |
| d |
| c |
| d |
| AB |
| AD |
| AB |
| a |
| AC |
| b |
| AP |
| AQ |
| AS |
| 3 |
| 2 |
| a |
| b |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
| 1 |
| 2 |
| 1 |
| A |
| 1 |
| B |
| 1 |
| C |
| 9 |
| π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(08年安徽信息交流)在周長為6的△ABC中,∠A、∠B 、∠C所對的邊分別為
,若
成等比數(shù)列;
(1)求B的取值范圍;
(2)求△ABC的面積S的最大值;
(3) 當△ABC的面積S最大時,過△ABC的重心G作直線交邊AB于M,交邊AC與N,設∠AGM=
,
試證:
。
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆安徽省高一下學期期中考試數(shù)學試卷(解析版) 題型:解答題
如圖,已知矩形ABCD所在平面外一點P,PA⊥平面ABCD,E、F分別是AB、
PC的中點.
![]()
(1)求證:EF∥平面PAD;
(2)求證:EF⊥CD;
(3)若ÐPDA=45°求EF與平面ABCD所成的角的大。
【解析】本試題主要考查了線面平行和線線垂直的運用,以及線面角的求解的綜合運用
第一問中,利用連AC,設AC中點為O,連OF、OE在△PAC中,∵ F、O分別為PC、AC的中點 ∴ FO∥PA …………①在△ABC中,∵ E、O分別為AB、AC的中點 ∴ EO∥BC ,又 ∵ BC∥AD ∴ EO∥AD …………②綜合①、②可知:平面EFO∥平面PAD∵ EF Ì 平面EFO ∴ EF∥平面PAD.
第二問中在矩形ABCD中,∵ EO∥BC,BC⊥CD ∴ EO⊥CD 又 ∵ FO∥PA,PA⊥平面AC ∴ FO⊥平面AC∴ EO為EF在平面AC內的射影 ∴ CD⊥EF.
第三問中,若ÐPDA=45°,則 PA=AD=BC ∵
EO![]()
BC,F(xiàn)O![]()
PA
∴ FO=EO 又∵ FO⊥平面AC∴ △FOE是直角三角形 ∴ ÐFEO=45°
證:連AC,設AC中點為O,連OF、OE(1)在△PAC中,∵ F、O分別為PC、AC的中點∴ FO∥PA …………① 在△ABC中,∵ E、O分別為AB、AC的中點 ∴ EO∥BC ,又 ∵ BC∥AD ∴ EO∥AD …………②綜合①、②可知:平面EFO∥平面PAD
∵ EF Ì 平面EFO ∴ EF∥平面PAD.
(2)在矩形ABCD中,∵ EO∥BC,BC⊥CD∴ EO⊥CD 又 ∵ FO∥PA,PA⊥平面AC ∴ FO⊥平面AC ∴ EO為EF在平面AC內的射影 ∴ CD⊥EF.
(3)若ÐPDA=45°,則 PA=AD=BC ∵ EO![]()
BC,F(xiàn)O![]()
PA
∴ FO=EO 又 ∵ FO⊥平面AC ∴ △FOE是直角三角形 ∴ ÐFEO=45°
![]()
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年福建省泉州市季延中學高二(上)期末數(shù)學試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com