欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

9.若α為銳角,則α,sinα,tanα的大小關(guān)系為sinα<α<tanα.

分析 由題意作出三角函數(shù)線,比較可得.

解答 解:在直角坐標(biāo)系中結(jié)合單位圓作出銳角α的正弦線和正切線,
由圖可知sinα=MP,α=$\widehat{AP}$,tanα=AT,
∵S△AOP=$\frac{1}{2}$×MP×1=$\frac{1}{2}$sinα,S扇形AOP=$\frac{1}{2}$×$\widehat{AP}$×1=$\frac{1}{2}$α,S△AOT=$\frac{1}{2}$×AT×1=$\frac{1}{2}$tanα,S△AOP<S扇形AOP<S△AOT,
∴MP<$\widehat{AP}$<AT,即sinα<α<tanα,
故答案為:sinα<α<tanα.

點(diǎn)評 本題考查三角函數(shù)線,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.給出下列命題:
①兩兩相交的三條直線共面;
②兩條相交直線上的三個點(diǎn)可以確定一個平面;
③梯形是平面圖形;
④一條直線和一個點(diǎn)可以確定一個平面;
⑤兩條相交直線可以確定一個平面;
⑥若點(diǎn)P不在平面α內(nèi),A,B,C三點(diǎn)都在平面α內(nèi),則P,A,B,C四點(diǎn)不在同一平面內(nèi).
其中正確的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)f(x)滿足f(x)+2f($\frac{1}{x}$)=3x,則f(-2)=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.要使不等式$\frac{a}$+$\frac{a}$≤-2成立,則a,b的取值條件為ab<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知3x≤($\frac{1}{9}$)x-3,求函數(shù)y=($\frac{1}{3}$)x的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=x2,對任意實(shí)數(shù)t,gt(x)=-tx+1.
(1)求函數(shù)y=g0(x)-f(x)的奇偶性;
(2)h(x)=$\frac{x}{f(x)}$-gt(x)在(0,2]上是單調(diào)遞減的,求實(shí)數(shù)t的取值范圍;
(3)若f(x)<mg2(x)對任意x∈(0,$\frac{1}{3}$]恒成立,求正數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=exlnx-$\frac{a}{2}$x2,函數(shù)f(x)在x=1處的切線與y軸垂直.
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)設(shè)g(x)=f′(x)-f(x),h(x)=-$\frac{x}$-lnx,若對任意的x∈(0,+∞)都有g(shù)(x)≥h(x)成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)f(x)=$\frac{a{x}^{2}+1}{bx+c}$是奇函數(shù)(a,b,c∈Z),且f(1)=2,f(2)<3,求f(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在平面直角坐標(biāo)系xOy中,向量$\overrightarrow{OA}$=(0,3),向量$\overrightarrow{OB}$=(4,3),若已知向量$\overrightarrow{OC}$=λ$\frac{\overrightarrow{OA}}{|\overrightarrow{OA}|}$+$\frac{\overrightarrow{OB}}{|\overrightarrow{OB}|}$(λ∈R,λ>0),則|$\overrightarrow{OC}$|=$\sqrt{5}$,則C點(diǎn)的坐標(biāo)為($\frac{4}{5}$,$\frac{\sqrt{109}}{5}$).

查看答案和解析>>

同步練習(xí)冊答案