欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

14.設拋物線C:y2=4x焦點為F,其準線與x軸的交點為Q,過點F作直線與拋物線C交于A、B兩點,且∠QBF=90°,則|AF|-|BF|=( 。
A.1B.2C.3D.4

分析 F(1,0).設A(x1,y1),B(x2,y2).由∠QBF=90°,可得kBFkQB=$\frac{{y}_{2}^{2}}{{x}_{2}^{2}-1}$=-1,又${y}_{2}^{2}=4{x}_{2}$,聯(lián)立解得x2=$\sqrt{5}$-2.取B$(\sqrt{5}-2,-2\sqrt{\sqrt{5}-2})$,由A,F(xiàn),B三點共線可得$\frac{{y}_{1}}{{x}_{1}-1}$=$\frac{-2\sqrt{\sqrt{5}-2}}{\sqrt{5}-2-1}$,又${y}_{1}^{2}=4{x}_{1}$,聯(lián)立解出2.利用|AF|-|BF|=x1-x2即可得出.

解答 解:F(1,0).
設A(x1,y1),B(x2,y2).
∵∠QBF=90°,
∴kBFkQB=$\frac{{y}_{2}}{{x}_{2}-1}$$•\frac{{y}_{2}}{{x}_{2}+1}$=$\frac{{y}_{2}^{2}}{{x}_{2}^{2}-1}$=-1,
又${y}_{2}^{2}=4{x}_{2}$,
∴$\frac{4{x}_{2}}{{x}_{2}^{2}-1}$=-1,化為${x}_{2}^{2}+4{x}_{2}$-1=0,解得x2=$\sqrt{5}$-2.
∴取B$(\sqrt{5}-2,-2\sqrt{\sqrt{5}-2})$,
可得$\frac{{y}_{1}}{{x}_{1}-1}$=$\frac{-2\sqrt{\sqrt{5}-2}}{\sqrt{5}-2-1}$,又${y}_{1}^{2}=4{x}_{1}$,
聯(lián)立解得x1=$\sqrt{5}$+2.
∴|AF|-|BF|=x1-x2=4.
故選:D.

點評 本題考查了拋物線與圓的標準方程及其性質(zhì)、相互垂直的直線斜率之間的關系、三點共線與斜率的關系,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

4.假設某地有男駕駛員300名,女駕駛員200名.為了研究駕駛員日平均開車速度是否與有關,現(xiàn)采用分層抽樣的方法,從中抽取了100名駕駛員,先設計了他們某月的日平均開車速度,然后按“男駕駛員”和“女駕駛員”分為兩組,再將兩組駕駛員的日平均開車速度(千米/小時)分成5組:[50,60),[60,70),[70,80),[80,90),[90,100)分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.

(1)從樣本中日平均開車速度不足60(千米/小時)的駕駛員中隨機抽取2人,求至少抽到一名“女駕駛員”的概率;
(2)如果一般認為日平均開車速度不少于80(千米/小時)者為“危險駕駛”.請你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否有90%的把握認為“危險駕駛與駕駛員的性別有關”?
危險駕駛非危險駕駛合計
男駕駛員154560
女駕駛員152540
合計3070100
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2>k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.“α是第二象限角”是“α是鈍角”的( 。
A.充分非必要條件B.必要非充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.在地球表面上,地點A位于東經(jīng)160°,北緯30°,地點B位于西經(jīng)20°,南緯45°,則A、B兩點的球面距離是$\frac{11}{12}$πR(設地球的半徑為R)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知關于x的函數(shù)f(x)=$\frac{x-a}{lnx}$.
(1)當a=0時,
①求函數(shù)y=f(x)的單調(diào)區(qū)間;
②若方程f(x)=k有兩個不同的根,求實數(shù)k的取值范圍;
(2)若f(x)≥$\sqrt{x}$恒成立,求實數(shù)a的取值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.過拋物線y2=2ax(a>0)的焦點F作斜率為2$\sqrt{2}$的直線l,若直線l與拋物線在第一象限的交點為A,若點A也在雙曲線$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a>0,b>0)上,則雙曲線的離心率為(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{\sqrt{2}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知直三棱柱ABC-A1B1C1的各頂點都在同一球面上.若AB=AC=AA1=2,∠BAC═90°,則該球的體積等于4$\sqrt{3}$π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知曲線C:x2=2py(p>0),過曲線C的焦點F斜率為k(k≠0)的直線l0交曲線C于A(x1,y1),B(x2,y2)兩點,x1+x2=-kx1x2,其中x1<x2
(Ⅰ)求C的方程;
(Ⅱ)分別作在點A,B處的切線l1,l2,若動點Q(x0,y0)(x1<x0<x2)在曲線C上,曲線C在點Q處的切線l交l1,l2于點D,E,求證:點F在以DE為直徑的圓上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.($\sqrt{x}$-$\frac{1}{2\root{3}{x}}$)100的展開式中,有理項的個數(shù)是( 。
A.11B.13C.15D.17

查看答案和解析>>

同步練習冊答案