【題目】已知函數(shù)f(x)=x2+2cosx,g(x)=ex(cosx﹣sinx+2x﹣2),其中e≈2.17828…是自然對(duì)數(shù)的底數(shù).(13分)
(Ⅰ)求曲線y=f(x)在點(diǎn)(π,f(π))處的切線方程;
(Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),討論h(x)的單調(diào)性并判斷有無極值,有極值時(shí)求出極值.
【答案】解:(Ⅰ)f(π)=π2﹣2.f′(x)=2x﹣2sinx,∴f′(π)=2π.
∴曲線y=f(x)在點(diǎn)(π,f(π))處的切線方程為:y﹣(π2﹣2)=2π(x﹣π).
化為:2πx﹣y﹣π2﹣2=0.
(Ⅱ)h(x)=g (x)﹣a f(x)=ex(cosx﹣sinx+2x﹣2)﹣a(x2+2cosx)
h′(x)=ex(cosx﹣sinx+2x﹣2)+ex(﹣sinx﹣cosx+2)﹣a(2x﹣2sinx)
=2(x﹣sinx)(ex﹣a)=2(x﹣sinx)(ex﹣elna).
令u(x)=x﹣sinx,則u′(x)=1﹣cosx≥0,∴函數(shù)u(x)在R上單調(diào)遞增.
∵u(0)=0,∴x>0時(shí),u(x)>0;x<0時(shí),u(x)<0.
(i)a≤0時(shí),ex﹣a>0,∴x>0時(shí),h′(x)>0,函數(shù)h(x)在(0,+∞)單調(diào)遞增;
x<0時(shí),h′(x)<0,函數(shù)h(x)在(﹣∞,0)單調(diào)遞減.
∴x=0時(shí),函數(shù)h(x)取得極小值,h(0)=﹣1﹣2a.
(ii)a>0時(shí),令h′(x)=2(x﹣sinx)(ex﹣elna)=0.
解得x1=lna,x2=0.
①0<a<1時(shí),x∈(﹣∞,lna)時(shí),ex﹣elna<0,h′(x)>0,函數(shù)h(x)單調(diào)遞增;
x∈(lna,0)時(shí),ex﹣elna>0,h′(x)<0,函數(shù)h(x)單調(diào)遞減;
x∈(0,+∞)時(shí),ex﹣elna>0,h′(x)>0,函數(shù)h(x)單調(diào)遞增.
∴當(dāng)x=0時(shí),函數(shù)h(x)取得極小值,h(0)=﹣2a﹣1.
當(dāng)x=lna時(shí),函數(shù)h(x)取得極大值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].
②當(dāng)a=1時(shí),lna=0,x∈R時(shí),h′(x)≥0,∴函數(shù)h(x)在R上單調(diào)遞增.
③1<a時(shí),lna>0,x∈(﹣∞,0)時(shí),ex﹣elna<0,h′(x)>0,函數(shù)h(x)單調(diào)遞增;
x∈(0,lna)時(shí),ex﹣elna<0,h′(x)<0,函數(shù)h(x)單調(diào)遞減;
x∈(lna,+∞)時(shí),ex﹣elna>0,h′(x)>0,函數(shù)h(x)單調(diào)遞增.
∴當(dāng)x=0時(shí),函數(shù)h(x)取得極大值,h(0)=﹣2a﹣1.
當(dāng)x=lna時(shí),函數(shù)h(x)取得極小值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].
綜上所述:a≤0時(shí),函數(shù)h(x)在(0,+∞)單調(diào)遞增;x<0時(shí),函數(shù)h(x)在(﹣∞,0)單調(diào)遞減.
x=0時(shí),函數(shù)h(x)取得極小值,h(0)=﹣1﹣2a.
0<a<1時(shí),函數(shù)h(x)在x∈(﹣∞,lna)是單調(diào)遞增;函數(shù)h(x)在x∈(lna,0)上單調(diào)遞減.當(dāng)x=0時(shí),函數(shù)h(x)取得極小值,h(0)=﹣2a﹣1.當(dāng)x=lna時(shí),函數(shù)h(x)取得極大值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].
當(dāng)a=1時(shí),lna=0,函數(shù)h(x)在R上單調(diào)遞增.
a>1時(shí),函數(shù)h(x)在(﹣∞,0),(lna,+∞)上單調(diào)遞增;函數(shù)h(x)在(0,lna)上單調(diào)遞減.當(dāng)x=0時(shí),函數(shù)h(x)取得極大值,h(0)=﹣2a﹣1.當(dāng)x=lna時(shí),函數(shù)h(x)取得極小值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].
【解析】(Ⅰ)f(π)=π2﹣2.f′(x)=2x﹣2sinx,可得f′(π)=2π即為切線的斜率,利用點(diǎn)斜式即可得出切線方程.
(Ⅱ)h(x)=g (x)﹣a f(x)=ex(cosx﹣sinx+2x﹣2)﹣a(x2+2cosx),可得h′(x)=2(x﹣sinx)(ex﹣a)=2(x﹣sinx)(ex﹣elna).令u(x)=x﹣sinx,則u′(x)=1﹣cosx≥0,可得函數(shù)u(x)在R上單調(diào)遞增.
由u(0)=0,可得x>0時(shí),u(x)>0;x<0時(shí),u(x)<0.
對(duì)a分類討論:a≤0時(shí),0<a<1時(shí),當(dāng)a=1時(shí),a>1時(shí),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值即可得出.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解導(dǎo)數(shù)的加減法法則的相關(guān)知識(shí),掌握導(dǎo)數(shù)加減法法則:
,以及對(duì)導(dǎo)數(shù)的乘除法法則的理解,了解導(dǎo)數(shù)的乘除法法則:
;
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{xn}是各項(xiàng)均為正數(shù)的等比數(shù)列,且x1+x2=3,x3﹣x2=2.(12分)
(Ⅰ)求數(shù)列{xn}的通項(xiàng)公式;
(Ⅱ)如圖,在平面直角坐標(biāo)系xOy中,依次連接點(diǎn)P1(x1 , 1),P2(x2 , 2)…Pn+1(xn+1 , n+1)得到折線P1 P2…Pn+1 , 求由該折線與直線y=0,x=x1 , x=xn+1所圍成的區(qū)域的面積Tn . ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,直線
,
.
(1)直線
是否過定點(diǎn)?若過定點(diǎn),求出該定點(diǎn)坐標(biāo),若不過定點(diǎn),請(qǐng)說明理由;
(2)已知點(diǎn)
,若直線
上存在點(diǎn)
滿足條件
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知△ABC的面積為
.(12分)
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐
,底面
為菱形,
,
,
平面
,
分別是
的中點(diǎn)。
![]()
(1)證明:
;
(2)若
為
上的動(dòng)點(diǎn),
與平面
所成最大角的正切值為
,求二面角
的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
是方程
的兩根,數(shù)列
是遞增的等差數(shù)列,數(shù)列
的前
項(xiàng)和為
,且
.
(1)求數(shù)列
的通項(xiàng)公式;
(2)記
,求數(shù)列
的前
和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ae2x+(a﹣2)ex﹣x.(12分)
(1)討論f(x)的單調(diào)性;
(2)若f(x)有兩個(gè)零點(diǎn),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班主任從本班
名男生,
名女生中隨機(jī)抽取一個(gè)容量為
的樣本,對(duì)他們的數(shù)學(xué)及物理成績(jī)進(jìn)行分析,這
名同學(xué)的數(shù)學(xué)及物理成績(jī)(單位:分?jǐn)?shù))對(duì)應(yīng)如下表:
學(xué)生序號(hào) |
|
|
|
|
|
|
|
數(shù)學(xué)成績(jī) |
|
|
|
|
|
|
|
物理成績(jī) |
|
|
|
|
|
|
|
(1)根據(jù)以上數(shù)據(jù),求物理成績(jī)
關(guān)于數(shù)學(xué)成績(jī)
的線性回歸方程(系數(shù)均精確到
),并預(yù)測(cè)班上某位數(shù)學(xué)成績(jī)?yōu)?/span>
分的同學(xué)的物理成績(jī)(保留到整數(shù));
(2)從物理成績(jī)不低于
分的樣本學(xué)生中隨機(jī)抽取
人,求抽到的
人數(shù)學(xué)成績(jī)也不低于
分的概率.
參考公式:![]()
已經(jīng)計(jì)算出:![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
的圖象如圖所示(其中
是定義域?yàn)?/span>
的函數(shù)
的導(dǎo)函數(shù)),則以下說法錯(cuò)誤的是( ).
![]()
A. ![]()
B. 當(dāng)
時(shí),函數(shù)
取得極大值
C. 方程
與
均有三個(gè)實(shí)數(shù)根
D. 當(dāng)
時(shí),函數(shù)
取得極小值
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com