【題目】已知函數(shù)
的圖象與
軸相切,且切點(diǎn)在
軸的正半軸上.
(1)若函數(shù)
在
上的極小值不大于
,求
的取值范圍;
(2)設(shè)
,證明:
在
上的最小值為定值.
【答案】(1)
;(2)定值![]()
【解析】試題分析:(1)函數(shù)
的圖象與
軸相切可得
。所以
,
,對(duì)
分類討論可得①當(dāng)
時(shí),
無(wú)極值;②當(dāng)
時(shí),
在
處取得極小值;③當(dāng)
時(shí),
在
上無(wú)極小值。綜上得當(dāng)當(dāng)
時(shí),
在
上有極小值
,解得
。(2)
,所以
,令
,則
,分析可得
,故
在
上遞增,因此
,所以當(dāng)
時(shí),
單調(diào)遞減;當(dāng)
時(shí),
單調(diào)遞增。故
為定值。
試題解析:
(1)解:∵
,
∴令
得
,
由題意可得
,∴
.
∴
,
∴
,
①當(dāng)
,即
時(shí),
無(wú)極值.
②當(dāng)
,即
時(shí),
令
得
;
令
得
或
,
∴ 當(dāng)
時(shí),
有極小值.
③當(dāng)
,即
時(shí),
在
上無(wú)極小值。
綜上可得當(dāng)
時(shí),
在
上有極小值,且極小值為
,
即
.
∵
,
∴
,
解得
,
又
,
∴
。
∴ 實(shí)數(shù)
的取值范圍為
。
(2)證明:由條件得
,
,
設(shè)
,
則
,
∵
,∴
,
又
,
∴
,
∴
,
∴
在
上遞增,
∴
.
由
得
;由
得
.
∴當(dāng)
時(shí),
單調(diào)遞減;當(dāng)
時(shí),
單調(diào)遞增。
∴ 當(dāng)
時(shí),
有極小值,也為最小值,且
為定值.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l經(jīng)過(guò)拋物線y2=4x的焦點(diǎn)F,且與拋物線相交于A、B兩點(diǎn).
(1)若AF=4,求點(diǎn)A的坐標(biāo);
(2)求線段AB的長(zhǎng)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)
,.
(1)求函數(shù)
的單調(diào)性;
(2)如果對(duì)任意的
,都有
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系
中,直線
與拋物線
相交于不同的
兩點(diǎn).
(1)如果直線
過(guò)拋物線的焦點(diǎn),求
的值;
(2)如果
,證明:直線
必過(guò)一定點(diǎn),并求出該定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:
的離心率為
,點(diǎn)P(1,
)在橢圓C上,直線l過(guò)橢圓的右焦點(diǎn)與橢圓相交于A,B兩點(diǎn).
(1)求橢圓C的方程;
(2)在x軸上是否存在定點(diǎn)M,使得
為定值?若存在,求定點(diǎn)M的坐標(biāo);若不在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有4個(gè)人去參加某娛樂(lè)活動(dòng),該活動(dòng)有甲、乙兩個(gè)游戲可供參加者選擇.為增加趣味性,約定:每個(gè)人通過(guò)擲一枚質(zhì)地均勻的骰子決定自己去參加哪個(gè)游戲,擲出點(diǎn)數(shù)為1或2的人去參加甲游戲,擲出點(diǎn)數(shù)大于2的人去參加乙游戲.
(1)求這4個(gè)人中恰有2個(gè)人去參加甲游戲的概率;
(2) 用X表示這4個(gè)人中去參加乙游戲的人數(shù),求隨機(jī)變量X的分布列與數(shù)學(xué)期望E(X).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某保險(xiǎn)公司的推銷員中隨機(jī)抽取50名,統(tǒng)計(jì)這些推銷員某月的月銷售額(單位:千元),由統(tǒng)計(jì)結(jié)果得如圖頻數(shù)分別表:
月銷售額 分組 | [12.25,14.75) | [14.75,17.25) | [17.25,19.75) | [19.75,22.25) | [22.25,24.75) |
頻數(shù) | 4 | 10 | 24 | 8 | 4 |
![]()
(1)作出這些數(shù)據(jù)的頻率分布直方圖;
(2)估計(jì)這些推銷員的月銷售額的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)作代表);
(3)根據(jù)以上抽樣調(diào)查數(shù)據(jù),公司將推銷員的月銷售指標(biāo)確定為17.875千元,試判斷是否有60%的職工能夠完成該銷售指標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某位同學(xué)進(jìn)行社會(huì)實(shí)踐活動(dòng),為了對(duì)白天平均氣溫與某奶茶店的某種飲料銷量之間的關(guān)系進(jìn)行分析研究,他分別記錄了12月11日至12月15日的白天平均氣溫
(℃)與該小賣部的這種飲料銷量
(杯),得到如下數(shù)據(jù):
日期 | 12月11日 | 12月12日 | 12月13日 | 12月14日 | 12月15日 |
平均氣溫 | 9 | 10 | 12 | 11 | 8 |
銷量 | 23 | 25 | 30 | 26 | 21 |
(1)請(qǐng)根據(jù)所給五組數(shù)據(jù),求出
關(guān)于
的線性回歸方程
;
(2)據(jù)(1)中所得的線性回歸方程,若天氣預(yù)報(bào)12月16日的白天平均氣溫7(℃),請(qǐng)預(yù)測(cè)該奶茶店這種飲料的銷量. (參考公式:
,
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)
是數(shù)列
的前
項(xiàng)和,已知
,
.
(Ⅰ)求數(shù)列
的通項(xiàng)公式;
(Ⅱ)令
,數(shù)列
的前
項(xiàng)和為
,求
.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com