已知
是定義在
上的奇函數(shù),且當(dāng)x<0時不等式
成立,若
, ![]()
,則
大小關(guān)系是
| A. | B.c > b > a | C. | D.c > a >b |
D
解析試題分析:令h(x)=xf(x),∵函數(shù)y=f(x)以及函數(shù)y=x是R上的奇函數(shù),∴h(x)=xf(x)是R上的偶函數(shù),又∵當(dāng)x>0時,h′(x)=f(x)+xf′(x)<0,∴函數(shù)h(x)在x∈(0,+∞)時的單調(diào)性為單調(diào)遞減函數(shù);∴h(x)在x∈(-∞,0)時的單調(diào)性為單調(diào)遞增函數(shù).若a=30.3•f(30.3),b=logπ3.f(logπ3)
又∵函數(shù)y=f(x)是定義在R上的奇函數(shù),∴f(0)=0,從而h(0)=0,因為
=-2,所以f(
)=f(-2)=-f(2),由0<logπ3<1<30.3<30.5<2,所以h(logπ3)<h(30.3)<h(2),即b<a<c,故選D
考點:本題考查了導(dǎo)數(shù)的運(yùn)用
點評:1)所有的基本函數(shù)的奇偶性;2)抽象問題具體化的思想方法,構(gòu)造函數(shù)的思想;3)導(dǎo)數(shù)的運(yùn)算法則:(uv)′=u′v+uv′;4)指對數(shù)函數(shù)的圖象;5)奇偶函數(shù)在對稱區(qū)間上的單調(diào)性:奇函數(shù)在對稱區(qū)間上的單調(diào)性相同;偶函數(shù)在對稱區(qū)間上的單調(diào)性相反;5)奇偶函數(shù)的性質(zhì):奇×奇=偶;偶×偶=偶;奇×偶=奇(同號得正、異號得負(fù));奇+奇=奇;偶+偶=偶.本題結(jié)合已知構(gòu)造出h(x)是正確解答的關(guān)鍵所在.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:單選題
設(shè)函數(shù)
,其導(dǎo)函數(shù)的圖象如圖所示,則函數(shù)
的減區(qū)間是![]()
| A. | B. |
| C. | D. |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com