【題目】某校為了探索一種新的教學(xué)模式,進行了一項課題實驗,甲班為實驗班,乙班為對比班,甲乙兩班的人數(shù)均為50人,一年后對兩班進行測試,測試成績的分組區(qū)間為
80,90
、
90,100
、
100,110
、
110,120
、
120,130
,由此得到兩個班測試成績的頻率分布直方圖:
![]()
(1)完成下面2×2列聯(lián)表,你能有97.5
的把握認為“這兩個班在這次測試中成績的差異與實施課題實驗有關(guān)”嗎?并說明理由;
成績小于100分 | 成績不小于100分 | 合計 | |
甲班 |
|
| 50 |
乙班 |
|
| 50 |
合計 |
|
| 100 |
(2)根據(jù)所給數(shù)據(jù)可估計在這次測試中,甲班的平均分是105.8,請你估計乙班的平均分,并計算兩班平均分相差幾分?
附:
,其中![]()
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5. 024 | 6.635 | 7.879 | 10.828 |
【答案】(1)見解析;(2)4
【解析】分析:第一問首先應(yīng)用題中的條件,結(jié)合頻率分布直方圖,得到相應(yīng)的數(shù)據(jù),完善列聯(lián)表,之后應(yīng)用公式求得觀測值
,之后與臨界值比較大小,得到結(jié)果;第二問應(yīng)用頻率分布直方圖中的相關(guān)數(shù)據(jù)得到對應(yīng)組的人數(shù),利用總分除以人數(shù)得到對應(yīng)的平均分,進而得到兩個班的平均分的差距.
詳解:(1)
,
,
,
,
,
∵
,
∴有97.5
的把握認為這兩個班在這次測試中成績的差異與實施課題實驗有關(guān)”
(2)乙班各段人數(shù)分別是:
|
|
|
|
|
4 | 20 | 15 | 10 | 1 |
估計乙班的平均分為:
![]()
兩班平均分相差4分.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個多面體的直觀圖及三視圖如圖所示:(其中M,N分別是AF,BC的中點). ![]()
(1)求證:MN∥平面CDEF;
(2)求多面體A﹣CDEF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f (x)=a lnx+
+x (a≠0).
(1)若曲線y=f (x)在點(1,f (1))處的切線與直線x-2y=0垂直,求實數(shù)a的值;
(2)討論函數(shù)f (x)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=
(a∈R)是奇函數(shù).
(1)求實數(shù)a的值;
(2)判斷并證明f(x)在R上的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=4cosxsin(x+
)-1.
(1)求f(x)的最小正周期和單調(diào)遞減區(qū)間;
(2)將y=f(x)圖象上所有的點向右平行移動
個單位長度,得到y=g(x)的圖象.若g(x)在(0,m)內(nèi)是單調(diào)函數(shù),求實數(shù)m的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線
:
上的點
到其焦點
的距離是
.
(1)求
的方程.
(2)過點
作圓
:
的兩條切線,分別交
于
兩點,若直線
的斜率是
,求實數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x﹣1+
(a∈R).
(1)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求a的值;
(2)求函數(shù)f(x)的極值;
(3)當(dāng)a=1時,若直線l:y=kx﹣1與曲線y=f(x)沒有公共點,求k的最大值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com