欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

8.已知函數(shù)f(x)(x∈R)滿足f(-x)+f(x)=2,若函數(shù)y=x3+x+1與y=f(x)的圖象的交點從左到右依次為(x1,y1),(x2,y2),(x3,y3),(x4,y4),(x5,y5),則x1+x2+x3+x4+x5+y1+y2+y3+y4+y5=(  )
A.1B.4C.5D.8

分析 由題意可得f(x)的圖象關于點(0,1)對稱,函數(shù)y=x3+x+1的圖象也關于點(0,1)對稱,可得 x1+x5 =x2+x4 =x3=0,y1+y5=y2+y4=2y3=2,由此可得結(jié)論.

解答 解:∵函數(shù)f(x)(x∈R)滿足f(-x)+f(x)=2,
∴f(x)的圖象關于點(0,1)對稱,
而函數(shù)y=x3+x+1的圖象也關于點(0,1)對稱,
∴x1+x5 =x2+x4 =x3=0,y1+y5=y2+y4=2y3=2,
∴x1+x2+x3+x4+x5+y1+y2+y3+y4+y5=5,
故選:C.

點評 本題主要考查函數(shù)的圖象的對稱性的應用,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

18.下列說法正確的是( 。
A.一個命題的逆命題為真,則它的逆否命題一定為真
B.“?x∈R,x3-x2+1≤0”的否定是“?x∈R,x3-x2+1>0”
C.命題“若a2+b2=0,則a,b全為0”的逆否命題是“若a,b全不為0,則a2+b2≠0”
D.若命題“¬p”與“p或q”都是真命題,則命題q一定是真命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.某學校決定從高一(1)班60名學生中利用隨機數(shù)表法抽取10人進行調(diào)研,先將60名學生按01,02,…,60進行編號;如果從第8行第7列的數(shù)開始從左向右讀,則抽取到的第4個人的編號為(  )
(下面摘取了第7行到第9行)
8442 1753 3157 2455 0688  7704 7447 6721 7633 5026  8392 
6301 5316 5916 9275 3862  9821 5071 7512 8673 5807  4439 
1326    3321 1342 7864 1607      8252 0744 3815 0324    4299    7931.
A.16B.38C.21D.50

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知函數(shù)f(x)=(sinx+cosx)cosx,則f(x)的最大值是$\frac{\sqrt{2}+1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=lnx+kx(k∈R)
(1)當k=-2時,求函數(shù)f(x)的極值點;
(2)當k=0時,若f(x)+$\frac{x}$-a≥0(a,b∈R)恒成立,試求ea-1-b+1的最大值;
(3)在(2)的條件下,當ea-1-b+1取最大值時,設F(b)=$\frac{a-1}$-m(m∈R),并設函數(shù)F(x)有兩個零點x1,x2,求證:x1•x2>e2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=x2ex-b,其中b∈R.
(Ⅰ)證明:對于任意x1,x2∈(-∞,0],都有f(x1)-f(x2)≤$\frac{4}{{e}^{2}}$;
(Ⅱ)討論函數(shù)f(x)的零點個數(shù)(結(jié)論不需要證明).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=lnx-$\frac{1}{2}$ax2+x,a∈R.
(1)令g(x)=f(x)-(ax-1),求函數(shù)g(x)的單調(diào)區(qū)間;
(2)若a=-2,正實數(shù)x1,x2滿足f(x1)+f(x2)+x1x2=0,證明:x1+x2≥$\frac{\sqrt{5}-1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.定積分${∫}_{-π}^{0}$(cosx+ex)dx的值為( 。
A.0B.1+$\frac{1}{{e}^{π}}$C.1+$\frac{1}{e}$D.1-$\frac{1}{{e}^{π}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.下列命題中,正確的命題個數(shù)是( 。
①用相關系數(shù)r來判斷兩個變量的相關性時,r越接近0,說明兩個變量有較強的相關性;
②將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上同一個非零常數(shù)后,期望改變,方差不變;
③某廠生產(chǎn)的零件外直徑x~N(3,1),且p(2≤x≤4)=0.68,則p(x<4)=0.84
④用數(shù)學歸納法證明不等式$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$<$\frac{13}{14}$(n≥2,n∈{N*)的過程中,由n=k遞推到n=k+1時不等式的左邊增加項為$\frac{1}{2k+1}$-$\frac{1}{2k+2}$.
A.1個B.2個C.3個D.4個

查看答案和解析>>

同步練習冊答案