【題目】已知數(shù)列{an}中,a1=1,an+1=an+n,利用如圖所示的程序框圖計算該數(shù)列的第10項,則判斷框中應(yīng)填的語句是( ) ![]()
A.n>10
B.n≤10
C.n<9
D.n≤9
【答案】D
【解析】解:通過分析,本程序框圖為“當(dāng)型“循環(huán)結(jié)構(gòu)
判斷框內(nèi)為滿足循環(huán)的條件
第1次循環(huán),m=1+1=2 n=1+1=2
第2次循環(huán),m=2+2=4 n=2+1=3
…
當(dāng)執(zhí)行第10項時,n=11
n的值為執(zhí)行之后加1的值,
所以,判斷條件應(yīng)為進(jìn)入之前的值
所以答案是:n≤9或n<10,
故選D.
【考點精析】通過靈活運(yùn)用算法的循環(huán)結(jié)構(gòu),掌握在一些算法中,經(jīng)常會出現(xiàn)從某處開始,按照一定條件,反復(fù)執(zhí)行某一處理步驟的情況,這就是循環(huán)結(jié)構(gòu),循環(huán)結(jié)構(gòu)可細(xì)分為兩類:當(dāng)型循環(huán)結(jié)構(gòu)和直到型循環(huán)結(jié)構(gòu)即可以解答此題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐P﹣ABCD,△PAD是以AD為斜邊的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E為PD的中點.
(Ⅰ)證明:CE∥平面PAB;
(Ⅱ)求直線CE與平面PBC所成角的正弦值.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2sin(ωx),其中常數(shù)ω>0
(1)令ω=1,判斷函數(shù)
的奇偶性,并說明理由;
(2)令ω=2,將函數(shù)y=f(x)的圖象向左平移個
單位,再向上平移1個單位,得到函數(shù)y=g(x)的圖象,對任意a∈R,求y=g(x)在區(qū)間[a,a+10π]上零點個數(shù)的所有可能值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)討論
的單調(diào)性;
(2)是否存在非負(fù)實數(shù)a,使得在
上的最大值為
?請證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)
(單位:千元)對年銷售量
(單位:
)和年利潤
(單位:千元)的影響,對近8年的年宣傳費(fèi)
和年銷售量
數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.
![]()
|
|
|
|
|
|
|
46.6 | 563 | 6.8 | 298.8 | 1.6 | 1469 | 108.8 |
表中
,![]()
(1)根據(jù)散點圖判斷,
與
哪一個適宜作為年銷售量
關(guān)于年宣傳費(fèi)
的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立
關(guān)于
的回歸方程;
(3)以知這種產(chǎn)品的年利率
與
、
的關(guān)系為
.根據(jù)(2)的結(jié)果求年宣傳費(fèi)
時,年銷售量及年利潤的預(yù)報值是多少?
附:對于一組數(shù)據(jù)
,
……
,其回歸線
的斜率和截距的最小二乘估計分別為:
,![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x﹣1)的圖象關(guān)于點(1,0)對稱,且當(dāng)x∈(﹣∞,0)時,f(x)+xf′(x)<0成立(其中f′(x)是f(x)的導(dǎo)函數(shù)),若a=(30.3)f(30.3),b=(logπ3)f(logπ3),c=(log3
)f(log3
),則 a,b,c的大小關(guān)系是( )
A.a>b>c
B.c>a>b
C.c>b>a
D.a>c>b
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x﹣1)的圖象關(guān)于點(1,0)對稱,且當(dāng)x∈(﹣∞,0)時,f(x)+xf′(x)<0成立(其中f′(x)是f(x)的導(dǎo)函數(shù)),若a=(30.3)f(30.3),b=(logπ3)f(logπ3),c=(log3
)f(log3
),則 a,b,c的大小關(guān)系是( )
A.a>b>c
B.c>a>b
C.c>b>a
D.a>c>b
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若函數(shù)
的圖象在點
處的切線方程為
,求
,
的值;
(2)當(dāng)
時,在區(qū)間
上至少存在一個
,使得
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com