【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是邊長為4的正方形,PA⊥平面ABCD,E為PB中點,PB=4
.
![]()
(I)求證:PD∥面ACE;
(Ⅱ)求三棱錐E﹣ABC的體積。
科目:高中數(shù)學 來源: 題型:
【題目】已知A(1,0,0),B(0,1,0),C(0,0,2).
(1)若
,求點D的坐標;
(2)問是否存在實數(shù)α,β,使得
=α
+β
成立?若存在,求出α,β的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓
:
經(jīng)過點
(
,
),且兩個焦點
,
的坐標依次為(
1,0)和(1,0).
(Ⅰ)求橢圓
的標準方程;
(Ⅱ)設(shè)
,
是橢圓
上的兩個動點,
為坐標原點,直線
的斜率為
,直線
的斜率為
,求當
為何值時,直線
與以原點為圓心的定圓相切,并寫出此定圓的標準方程.
![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項和為Sn , 等比數(shù)列{bn}的前n項和為Tn , a1=﹣1,b1=1,a2+b2=2.
(Ⅰ)若a3+b3=5,求{bn}的通項公式;
(Ⅱ)若T3=21,求S3 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系
中,設(shè)中心在坐標原點,焦點在
軸上的橢圓
的左、右焦點分別為
,右準線
與
軸的交點為
,
.
![]()
(1)已知點
在橢圓
上,求實數(shù)
的值;
(2)已知定點
.
① 若橢圓
上存在點
,使得
,求橢圓
的離心率的取值范圍;
② 如圖,當
時,記
為橢圓
上的動點,直線
分別與橢圓
交于另一點
,若
且
,求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知F為拋物線C:y2=4x的焦點,過F作兩條互相垂直的直線l1 , l2 , 直線l1與C交于A、B兩點,直線l2與C交于D、E兩點,則|AB|+|DE|的最小值為( 。
A.16
B.14
C.12
D.10
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】袋中裝有紅球3個、白球2個、黑球1個,從中任取2個,則互斥而不對立的兩個事件是
![]()
A. 至少有一個白球;都是白球 B. 至少有一個白球;至少有一個紅球
C. 至少有一個白球;紅、黑球各一個 D. 恰有一個白球;一個白球一個黑球
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com