【題目】已知圓C過點(1,2)和(2,1),且圓心在直線x+y﹣4=0上.
(Ⅰ)求圓C的方程;
(Ⅱ)若一束光線l自點A(﹣3,3)發(fā)出,射到x軸上,被x軸反射到圓C上,若反射點為M(a,0),求實數(shù)a的取值范圍.
【答案】解:(Ⅰ)設圓心坐標為(x,4﹣x),則(x﹣1)2+(2﹣x)2=(x﹣2)2+(3﹣x)2 ,
∴x=2,
∴C(2,2),
∴圓C的方程C:(x﹣2)2+(y﹣2)2=1;
(Ⅱ)A關于x軸的對稱點A′(﹣3,﹣3),設過A′的直線為y+3=k(x+3),
當該直線與⊙C相切時,有
=1,∴k=
或k=![]()
∴過A′,⊙C的兩條切線為y+3=
(x+3),y+3=
(x+3),
令y=0,得x1=﹣
,x2=1
∴反射點M在x軸上的范圍是[﹣
,1].
【解析】(Ⅰ)求出圓心坐標與半徑,即可求圓C的方程;
(Ⅱ)由題意,可知反射線必過定點A′(點是點A關于x軸對稱的點),利用幾何知識知當反射線與已知圓相切時恰好為范圍的臨界狀態(tài).
【考點精析】解答此題的關鍵在于理解圓的標準方程的相關知識,掌握圓的標準方程:
;圓心為A(a,b),半徑為r的圓的方程.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
,
,其中函數(shù)
的圖象在點
處的切線平行于
軸.
(1)確定
與
的關系;若
,并試討論函數(shù)
的單調(diào)性;
(2)設斜率為
的直線與函數(shù)
的圖象交于兩點
,求證:
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以直角坐標系的原點
為極點,
軸正半軸為極軸,并在兩種坐標系中取相同的長度單位,已知直線
的參數(shù)方程為
,(
為參數(shù),
),曲線
的極坐標方程為
.
(1)求曲線
的直角坐標方程;
(2)設直線
與曲線
相交于
,
兩點,當
變化時,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=log4(4x+1)+kx(k∈R)是偶函數(shù)
(1)求k的值;
(2)設g(x)=log4(a2x﹣
a),若函數(shù)f(x)與g(x)的圖象有且只有一個公共點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l過點P(0,2),斜率為k,圓Q:x2+y2﹣12x+32=0.
(1)若直線l和圓相切,求直線l的方程;
(2)若直線l和圓交于A、B兩個不同的點,問是否存在常數(shù)k,使得
+
與
共線?若存在,求出k的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=loga(1﹣x)﹣loga(1+x)(a>0,且a≠1).
(1)求函數(shù)f(x)的定義域;
(2)判斷f(x)的奇偶性;
(3)求滿足不等式f(x)<0的x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合A={x|12﹣5x﹣2x2>0},B={x|x2﹣ax+b≤0}滿足A∩B=,A∪B=(﹣4,8],求實數(shù)a,b的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)
的圖象為
,
關于點
對稱的圖象為
,
對應的函數(shù)為
.
(Ⅰ)求
的解析式;
(Ⅱ)若直線
與
只有一個交點,求
的值和交點坐標.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com