欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

已知函數(shù)f(x)對于任意x,y∈R,總有f(x)+f(y)=f(x+y),且當x>0時,f(x)<0,f(1)=-.
(1)求證:f(x)在R上是減函數(shù).
(2)求f(x)在[-3,3]上的最大值和最小值.
(1)見解析  (2) 最大值為2,最小值為-2
(1)方法一:∵函數(shù)f(x)對于任意x,y∈R總有f(x)+f(y)=f(x+y),
∴令x=y=0,得f(0)=0.
再令y=-x,得f(-x)=-f(x).
在R上任取x1>x2,則x1-x2>0,
f(x1)-f(x2)=f(x1)+f(-x2)=f(x1-x2).
又∵x>0時,f(x)<0,而x1-x2>0,
∴f(x1-x2)<0,
即f(x1)<f(x2).
因此f(x)在R上是減函數(shù).
方法二:設x1>x2,
則f(x1)-f(x2)
=f(x1-x2+x2)-f(x2)
=f(x1-x2)+f(x2)-f(x2)
=f(x1-x2).
又∵x>0時,f(x)<0,而x1-x2>0,
∴f(x1-x2)<0,
即f(x1)<f(x2),
∴f(x)在R上為減函數(shù).
(2)∵f(x)在R上是減函數(shù),
∴f(x)在[-3,3]上也是減函數(shù),
∴f(x)在[-3,3]上的最大值和最小值分別為f(-3)與f(3).
而f(3)="3f(1)=-2,f" (-3)=-f(3)=2.
∴f(x)在[-3,3]上的最大值為2,最小值為-2.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知定義域為R的函數(shù)f(x)=是奇函數(shù).
(1)求a,b的值.
(2)用定義證明f(x)在(-∞,+∞)上為減函數(shù).
(3)若對于任意t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)為常數(shù),且).
(1)當時,求函數(shù)的最小值(用表示);
(2)是否存在不同的實數(shù)使得,并且,若存在,求出實數(shù)的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(1)若,判斷函數(shù)的奇偶性,并加以證明;
(2)若函數(shù)上是增函數(shù),求實數(shù)的取值范圍;
(3)若存在實數(shù)使得關于的方程有三個不相等的實數(shù)根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

函數(shù)的定義域為,其圖象上任一點滿足,則給出以下四個命題:
①函數(shù)一定是偶函數(shù);     ②函數(shù)可能是奇函數(shù);
③函數(shù)單調遞增; ④若是偶函數(shù),其值域為
其中正確的序號為_______________.(把所有正確的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)f(x)=則該函數(shù)為(  )
A.單調遞增函數(shù),奇函數(shù)
B.單調遞增函數(shù),偶函數(shù)
C.單調遞減函數(shù),奇函數(shù)
D.單調遞減函數(shù),偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在實數(shù)集中定義一種運算“”,對任意,為唯一確定的實數(shù),且具有性質:
(1)對任意,
(2)對任意,
關于函數(shù)的性質,有如下說法:①函數(shù)的最小值為;②函數(shù)為偶函數(shù);③函數(shù)的單調遞增區(qū)間為
其中所有正確說法的個數(shù)為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

a>0,b>0,e為自然對數(shù)的底數(shù),ea+2a=eb+3b,則ab的大小關系是________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)f(x)=單調遞減,那么實數(shù)a的取值范圍是(  )
A.(0,1)B.(0,)
C.[,)D.[,1)

查看答案和解析>>

同步練習冊答案