欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

7.已知F1(-c,0),F(xiàn)2(c,0)是橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右兩個(gè)焦點(diǎn),P為橢圓上的一點(diǎn),且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}={c^2}$,則橢圓的離心率的取值范圍為( 。
A.$(0,\frac{{\sqrt{3}}}{3}]$B.$(0,\frac{{\sqrt{2}}}{2}]$C.$[\frac{1}{3},\frac{{\sqrt{2}}}{2}]$D.$[\frac{{\sqrt{3}}}{3},\frac{{\sqrt{2}}}{2}]$

分析 設(shè)P(x0,y0),則$\frac{{x}_{0}^{2}}{{a}^{2}}+\frac{{y}_{0}^{2}}{^{2}}=1$,可得:${y}_{0}^{2}$=$^{2}(1-\frac{{x}_{0}^{2}}{{a}^{2}})$.由于$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}={c^2}$,可得${x}_{0}^{2}-{c}^{2}+{y}_{0}^{2}$=c2,化為${x}_{0}^{2}$=$\frac{{a}^{2}}{{c}^{2}}(3{c}^{2}-{a}^{2})$,利用$0≤{x}_{0}^{2}≤{a}^{2}$,及其離心率計(jì)算公式即可得出.

解答 解:設(shè)P(x0,y0),則$\frac{{x}_{0}^{2}}{{a}^{2}}+\frac{{y}_{0}^{2}}{^{2}}=1$,
∴${y}_{0}^{2}$=$^{2}(1-\frac{{x}_{0}^{2}}{{a}^{2}})$.
∵$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}={c^2}$,
∴(-c-x0,-y0)•(c-x0,-y0)=c2
化為${x}_{0}^{2}-{c}^{2}+{y}_{0}^{2}$=c2,
∴${x}_{0}^{2}+^{2}(1-\frac{{x}_{0}^{2}}{{a}^{2}})$=2c2
化為${x}_{0}^{2}$=$\frac{{a}^{2}}{{c}^{2}}(3{c}^{2}-{a}^{2})$,
∵$0≤{x}_{0}^{2}≤{a}^{2}$,
∴0≤$\frac{{a}^{2}}{{c}^{2}}(3{c}^{2}-{a}^{2})$≤a2
解得$\frac{\sqrt{3}}{3}≤e≤\frac{\sqrt{2}}{2}$.
故選:D.

點(diǎn)評(píng) 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、數(shù)量積運(yùn)算性質(zhì)、不等式的解法,考查了變形能力、推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.(1)由數(shù)字1,2,3,4,5可以組成多少個(gè)沒(méi)有重復(fù)數(shù)字的五位數(shù)?可以組成多少個(gè)沒(méi)有重復(fù)數(shù)字的正整數(shù)?
(2)由數(shù)字1,2,3,4可以組成多少個(gè)沒(méi)有重復(fù)數(shù)字的比1300大的正整數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.函數(shù)f(x)=lnx+ax存在與直線2x-y=0平行的切線,則實(shí)數(shù)a的取值范圍為(-∞,2-$\frac{1}{e}$)∪(2-$\frac{1}{e}$,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知圓C:(x-a)2+y2=1,直線l:x=1;則:“$\frac{1}{2}≤a≤\frac{3}{2}$”是“C上恰有不同四點(diǎn)到l的距離為$\frac{1}{2}$”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)f(x)=|x+3|-|x-1|,若f(x)≤a2-3a(x∈R)恒成立,則實(shí)數(shù)a的取值范圍為( 。
A.(-∞,-1]∪[4,+∞)B.(-∞,-2]∪[5,+∞)C.[1,2]D.(-∞,1]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=lnx-ax+$\frac{x}$(a,b∈R),且對(duì)任意x>0,都有$f(x)+f(\frac{1}{x})=0$.
(1)求a,b的關(guān)系式;
(2)若f(x)存在兩個(gè)極值點(diǎn)x1,x2,且x1<x2,求出a的取值范圍并證明$f(\frac{a^2}{2})>0$;
(3)在(2)的條件下,判斷y=f(x)零點(diǎn)的個(gè)數(shù),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.$\overrightarrow{{a}_{i}}$(i=1,2,…,n){$\overrightarrow{{a}_{n}}$}{$\overrightarrow{{a}_{n}}$}$\overrightarrow{{a}_{1}}$=(1,1)$\overrightarrow{{a}_{n}}$=(xn,yn)=$\frac{1}{2}$(xn-1-yn-1,xn-1+yn-1)(n≥2)
(1)證明:數(shù)列{|$\overrightarrow{{a}_{n}}$|}是等比數(shù)列;
(2)設(shè)θn表示向量$\overrightarrow{{a}_{n-1}}$與$\overrightarrow{{a}_{n}}$間的夾角,若bn=2nθn-1,Sn=b1+b2+…+bn,求Sn
(3)設(shè)cn=|$\overrightarrow{{a}_{n}}$|•log2|$\overrightarrow{{a}_{n}}$|,問(wèn)數(shù)列{cn}中是否存在最小項(xiàng)?若存在,求出最小項(xiàng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知點(diǎn)A(-2,3)、B(1,-4),則直線AB的方程是7x+3y+5=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.集合M={x|x=sinθ,θ∈R},N={x|$\sqrt{2}$≤2x≤8},則M∩N=(  )
A.$[\frac{1}{2},2]$B.[-1,3]C.$[-1,\frac{1}{2}]$D.$[\frac{1}{2},1]$

查看答案和解析>>

同步練習(xí)冊(cè)答案