【題目】對(duì)于函數(shù)
,若存在
成立,則稱
的不動(dòng)點(diǎn).如果函數(shù)
有且只有兩個(gè)不動(dòng)點(diǎn)0,2,且![]()
(1)求函數(shù)
的解析式;
(2)已知各項(xiàng)不為零的數(shù)列
,求數(shù)列通項(xiàng)
;
(3)如果數(shù)列
滿足
,求證:當(dāng)
時(shí),恒有
成立.
【答案】(1)
(2)
(3)見解析
【解析】
(1)根據(jù)題意得方程
有兩解0,2,代入可得
再根據(jù)
得
結(jié)合
解得c,b,最后代入驗(yàn)證舍去不滿足題意的解,(2)代入化簡(jiǎn)得
再根據(jù)和項(xiàng)與通項(xiàng)關(guān)系解得
最后代入驗(yàn)證
,根據(jù)等差數(shù)列通項(xiàng)公式求結(jié)果,(3)利用反證法,假設(shè)
先由
得
,再根據(jù)
得
兩者矛盾,即得結(jié)論.
解:設(shè)
得:
由違達(dá)定理得:![]()
解得
代入表達(dá)式
,由![]()
得
不止有兩個(gè)不動(dòng)點(diǎn),
(2)由題設(shè)得
(A)
且
(B)
由(A)
(B)得:![]()
![]()
解得
(舍去)或
;由
,若
這與
矛盾,
,即{
是以
1為首項(xiàng),
1為公差的等差數(shù)列,
;
(3)證法(一):運(yùn)用反證法,假設(shè)
則由(1)知![]()
![]()
∴
,而當(dāng)![]()
這與假設(shè)矛盾,故假設(shè)不成立,∴
.
證法(二):由![]()
得
<0或
結(jié)論成立;
若
,此時(shí)
從而![]()
即數(shù)列{
}在
時(shí)單調(diào)遞減,由
,可知
上成立.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某某大學(xué)藝術(shù)專業(yè)400名學(xué)生參加某次測(cè)評(píng),根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組:
,并整理得到如下頻率分布直方圖:
![]()
(Ⅰ)從總體的400名學(xué)生中隨機(jī)抽取一人,估計(jì)其分?jǐn)?shù)小于70的概率;
(Ⅱ)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計(jì)總體中分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù);
(Ⅲ)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等.試估計(jì)總體中男生和女生人數(shù)的比例.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,平面五邊形ABCDE中,AB∥CD,∠BAD=90°,AB=2,CD=1,△ADE是邊長(zhǎng)為2的正三角形.現(xiàn)將△ADE沿AD折起,得到四棱錐E﹣ABCD(如圖2),且DE⊥AB.
(Ⅰ)求證:平面ADE⊥平面ABCD;
(Ⅱ)求平面BCE和平面ADE所成銳二面角的大小;
(Ⅲ)在棱AE上是否存在點(diǎn)F,使得DF∥平面BCE?若存在,求
的值;若不存在,請(qǐng)說明理由.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=
e﹣ax(a>0).
(1)當(dāng)a=2時(shí),求曲線y=f(x)在x=
處的切線方程;
(2)討論方程f(x)﹣1=0根的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某產(chǎn)品按質(zhì)量分10個(gè)檔次,生產(chǎn)最低檔次的利潤(rùn)是8元/件;每提高一個(gè)檔次,利潤(rùn)每件增加2元,每提高一個(gè)檔次,產(chǎn)量減少3件,在相同時(shí)間內(nèi),最低檔次的產(chǎn)品可生產(chǎn)60件.問:在相同時(shí)間內(nèi),生產(chǎn)第幾檔次的產(chǎn)品可獲得最大利潤(rùn)?(最低檔次為第一檔次)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解春季晝夜溫差大小與某種子發(fā)芽多少之間的關(guān)系,現(xiàn)在從4月份的30天中隨機(jī)挑選了5天進(jìn)行研究,且分別記錄了每天晝夜溫差與每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下表格:
日期 | 4月1日 | 4月7日 | 4月15日 | 4月21日 | 4月30日 |
溫差x/℃ | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y/顆 | 23 | 25 | 30 | 26 | 16 |
(1)從這5天中任選2天,記發(fā)芽的種子數(shù)分別為
,求事件“
均不小于25”的概率;
(2) 若由線性回歸方程得到的估計(jì)數(shù)據(jù)與4月份所選5天的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的. 請(qǐng)根據(jù)4月7日,4月15日與4月21日這三天的數(shù)據(jù),求出
關(guān)于
的線性回歸方程
,并判定所得的線性回歸方程是否可靠?
參考公式:
, ![]()
參考數(shù)據(jù): ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體ABCD﹣A1B1C1D1中,E、F分別為棱DD1和BC中點(diǎn)G為棱A1B1上任意一點(diǎn),則直線AE與直線FG所成的角為( ) ![]()
A.30°
B.45°
C.60°
D.90°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A、B、C是△ABC的三個(gè)內(nèi)角,則在下列各結(jié)論中,不正確的為( )
A. sin2A=sin2B+sin2C+2sinBsinCcos(B+C)
B. sin2B=sin2A+sin2C+2sinAsinCcos(A+C)
C. sin2C=sin2A+sin2B-2sinAsinBcosC
D. sin2(A+B)=sin2A+sin2B-2sinBsinCcos(A+B)
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com