【題目】已知在數(shù)列{an}中,設a1為首項,其前n項和為Sn,若對任意的正整數(shù)m,n都有不等式S2m+S2n<2Sm+n(m≠n)恒成立,且2S6<S3.
(1)設數(shù)列{an}為等差數(shù)列,且公差為d,求
的取值范圍;
(2)設數(shù)列{an}為等比數(shù)列,且公比為q(q>0且q≠1),求a1
q的取值范圍.
【答案】(1)
<﹣3;(2)a1
q>0
【解析】
(1)根據(jù)已知條件,由于數(shù)列是等差數(shù)列,運用等差數(shù)列的求和公式,建立不等式,進一步求出相應的結(jié)果;
(2)根據(jù)已知條件,由于數(shù)列是等比數(shù)列,運用等比數(shù)列的求和公式,建立不等式,進一步求出相應的結(jié)果.
在數(shù)列{an}中,設a1為首項,其前n項和為Sn,
若對任意的正整數(shù)m、n都有不等式S2m+S2n<2Sm+n(m≠n)恒成立,
(1)設{an}為等差數(shù)列,且公差為d,
則:2ma1+
d+2na1+
d<2[(m+n)a1+
d],
整理得:(m﹣n)2d<0,則d<0,由2S6>S3,整理得:9a1+27d>0,
則a1>﹣3d,所以d<0,
<﹣3;
(2)設{an}為等比數(shù)列,且公比為q(q>0且q≠1),
則
,整理得
(2qm+n﹣q2m﹣q2n)<0,
則:﹣
(qm﹣qn)2<0,所以
>0,由2S6>S3,則:2q6﹣q3﹣1<0
解得:﹣
<q3<1,由于q>0,所以:0<q<1,則:a1>0.即有a1
q>0.
科目:高中數(shù)學 來源: 題型:
【題目】已知點
,直線
:
,
為平面上的動點,過點
作直線
的垂線,垂足為
,且滿足
.
(1)求動點
的軌跡
的方程;
(2)過點
作直線
與軌跡
交于
,
兩點,
為直線
上一點,且滿足
,若
的面積為
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設等差數(shù)列{an}的前n項和為Sn,若S9=81,a3+a5=14.
(1)求數(shù)列{an}的通項公式;
(2)設bn=
,若{bn}的前n項和為Tn,證明:Tn<
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在寬為
的路邊安裝路燈,燈柱
高為
,燈桿
是半徑為
的圓
的一段劣弧.路燈采用錐形燈罩,燈罩頂
到路面的距離為
,到燈柱所在直線的距離為
.設
為燈罩軸線與路面的交點,圓心
在線段
上.
![]()
(1)當
為何值時,點
恰好在路面中線上?
(2)記圓心
在路面上的射影為
,且
在線段
上,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有一個底面半徑為3,軸截面為正三角形的圓錐紙盒,在該紙盒內(nèi)放一個棱長均為a的四面體,并且四面體在紙盒內(nèi)可以任意轉(zhuǎn)動,則a的最大值為________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓
:
的離心率為
,橢圓
:
經(jīng)過點
.
(1)求橢圓
的標準方程;
(2)設點
是橢圓
上的任意一點,射線
與橢圓
交于點
,過點
的直線
與橢圓
有且只有一個公共點,直線
與橢圓
交于
,
兩個相異點,證明:
面積為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
.
(1)若曲線
在
處的切線的斜率為3,求實數(shù)
的值;
(2)若函數(shù)在區(qū)間
上存在極小值,求實數(shù)
的取值范圍;
(3)如果
的解集中只有一個整數(shù),求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A.拋擲一枚硬幣,正面朝上的概率是
,所以拋擲兩次一定會出現(xiàn)一次正面朝上的情況
B.某地氣象局預報說,明天本地降水概率為
,這說明明天本地有
的區(qū)域下雨
C.概率是客觀存在的,與試驗次數(shù)無關
D.若買彩票中獎的概率是萬分之一,則買彩票一萬次就有一次中獎
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com